Table of Contents

- Most chapter begins with an Introduction and conclude with a Summary, References and Problems
- 1 Fundamentals
- What is a Robot?
- Classification of Robots
- What is Robotics?
- History of Robotics
- Advantages and Disadvantages of Robots
- Robot Components
- Robot Degrees of Freedom
- Robot Joints
- Robot Coordinates
- Robot Reference Frames
- Programming Modes
- Robot Characteristics
- Robot Workspace
- Robot Languages
- Robot Applications
- Other Robots and Applications
- Social Issues
- 2 Robot Kinematics: Position Analysis
- Robots as Mechanisms
- Matrix Representation
- Homogeneous Transformation Matrices
- Representation of Transformations
- Inverse of Transformation Matrices
- Forward and Inverse Kinematics of Robots
- Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots
- The Inverse Kinematic Solution of Robots
- Inverse Kinematic Programming of Robots
- Degeneracy and Dexterity
- The Fundamental Problem with the Denavit-Hartenberg Representation
- Design Project 1: A Three-Degree-of-Freedom Robot
- 3 Differential Motions and Velocities
- Differential Relationships
- Jacobian
- Differential Motions of a Frame
- Interpretation of the Differential Change
- Differential Changes Between Frames
- Differential Motions of a Robot and Its Hand Frame
- Calculation of the Jacobian
- How to Relate the Jacobian and the Differential Operator
- Inverse Jacobian
- Design Project

- 4 Dynamic Analysis and Forces
- Lagrangian Mechanics: A Short Overview
- Effective Moments of Inertia
- Dynamic Equations for Multiple-Degree-of-Freedom Robots
- Static Force Analysis of Robots
- Transformation of Forces and Moments Between Coordinate Frames
- Design Project
- 5 Trajectory Planning
- Path vs. Trajectory
- Joint-Space vs. Cartesian-Space Descriptions
- Basics of Trajectory Planning
- Joint-Space Trajectory Planning
- Cartesian-Space Trajectories
- Continuous Trajectory Recording
- Design Project
- 6 Actuators
- Characteristics of Actuating Systems
- Comparison of Actuating Systems
- Hydraulic Devices
- Pneumatic Devices
- Electric Motors
- Microprocessor Control of Electric Motors
- Magnetostrictive Actuators
- Shape-Memory Type Metals
- Speed Reduction
- Design Project 1
- Design Project 2
- 7 Sensors
- Sensor Characteristics
- Position Sensors
- Velocity Sensors
- Acceleration Sensors
- Force and Pressure Sensors
- Torque Sensors
- Microswitches
- Light and Infrared Sensors
- Touch and Tactile Sensors
- Proximity Sensors
- Voice Recognition Devices
- Range-finders
- Sniff Sensors
- Vision Systems
- Voice Synthesizers
- Remote Center Compliance (RCC) Device
- Design Project
- 8 Image Processing and Analysis with Vision Systems

- Image Processing versus Image Analysis
- Two- and Three-Dimensional Image Types
- What is an Image
- Acquisition of Images
- Digital Images
- Frequency Domain vs. Spatial Domain
- Fourier Transform of a Signal and its Frequency Content
- Frequency Content of an Image; Noise, Edges
- Spatial Domain Operations: Convolution Mask
- Sampling and Quantization
- Sampling Theorem
- Image-Processing Techniques
- Histogram of Images
- Thresholding
- Connectivity
- Noise Reduction
- Edge Detection
- Hough Transform
- Segmentation
- Segmentation by Region Growing and Region Splitting
- Binary Morphology Operations
- Gray Morphology Operations
- Image Analysis
- Object Recognition by Features
- Depth Measurement with Vision Systems
- Specialized Lighting
- Image Data Compression
- Real-Time Image Processing
- Heuristics
- Applications of Vision Systems
- Design project
- 9 Fuzzy Logic Control
- Fuzzy Control: What is Needed
- Crisp Values vs. Fuzzy Values
- Fuzzy Sets: Degrees of Membership and Truth
- Fuzzification
- Fuzzy Inference Rule Base
- Defuzzification
- Simulation of Fuzzy Logic Controller
- Applications of Fu