- Preface
- Chapter 1 Continuous-Time System Description
- 1.1 Preview
- 1.2 Basic Concepts
- 1.2.1 Control System Terminology
- 1.2.2 The Feedback Concept
- 1.3 Modeling
- 1.4 System Dynamics
- 1.5 Electrical Components
- 1.5.1 Mesh Analysis
- 1.5.2 State Variables
- 1.5.3 Node Analysis
- 1.5.4 Analyzing Operational Amplifier Circuits
- 1.5.5 Operational Amplifier Applications
- 1.6 Translational Mechanical Components
- 1.6.1 Free Body Diagrams
- 1.6.2 State Variables
- 1.7 Rotational Mechanical Components
- 1.7.1 Free Body Diagrams
- 1.7.2 Analogies
- 1.7.3 Gear Trains and Transformers
- 1.8 Electromechanical Components
- 1.9 Aerodynamics
- 1.9.1 Nomenclature
- 1.9.2 Dynamics
- 1.9.3 Lateral and Longitudinal Motion
- 1.10 Thermal Systems
- 1.11 Hydraulics
- 1.12 Transfer Function and Stability
- 1.12.1 Transfer Functions
- 1.12.2 Response Terms
- 1.12.3 Multiple Inputs and Outputs
- 1.12.4 Stability
- 1.13 Block Diagrams
- 1.13.1 Block Diagram Elements
- 1.13.2 Block Diagram Reductions
- 1.13.3 Multiple Inputs and Outputs
- 1.14 Signal Flow Graphs
- 1.14.1 Comparison and Block Diagrams
- 1.14.2 Mason's Rule
- 1.15 A Positioning Servo
- 1.16 Controller Model of the Thyroid Gland
- 1.17 Stick-Slip Response of an Oil Well Drill
- 1.18 Summary

- References
- Problems
- Chapter 2 Continuous-Time System Response
- 2.1 Preview
- 2.2 Response of First-Order Systems
- 2.3 Response of Second-Order Systems
- 2.3.1 Time Response
- 2.3.2 Overdamped Response
- 2.3.3 Critically Damped Response
- 2.3.4 Underdamped Response
- 2.3.5 Undamped Natural Frequency and Damping Ratio
- 2.3.6 Rise Time, Overshoot and Settling Time
- 2.4 Higher-Order System Response
- 2.5 Stability Testing
- 2.5.1 Coefficient Tests
- 2.5.2 Routh-Hurwitz Testing
- 2.5.3 Significance of the Array Coefficients
- 2.5.4 Left-Column Zeros
- 2.5.5 Row of Zeros
- 2.5.6 Eliminating a Possible Odd Divisor
- 2.5.7 Multiple Roots
- 2.6 Parameter Shifting
- 2.6.1 Adjustable Systems
- 2.6.2 Khartinov's Theorem
- 2.7 An Insulin Delivery System
- 2.8 Analysis of an Aircraft Wing
- 2.9 Summary
- References
- Problems
- Chapter 3 Performance Specifications
- 3.1 Preview
- 3.2 Analyzing Tracking Systems
- 3.2.1 Importance of Tracking Systems
- 3.2.2 Natural Response, Relative Stability and Damping
- 3.3 Forced Response
- 3.3.1 Steady State Error
- 3.3.2 Initial and Final Values
- 3.3.3 Steady State Errors to Power-of-Time Inputs
- 3.4 Power-of-Time Error Performance
- 3.4.1 System Type Number
- 3.4.2 Achieving a Given Type Number
- 3.4.3 Unity Feedback Systems
- 3.4.4 Unity Feedback Error Coefficients
- 3.5 Performance Indices and Optimal Systems

- 3.6 System Sensitivity
- 3.6.1 Calculating the Effects of Changes in Parameters
- 3.6.2 Sensitivity Functions
- 3.6.3 Sensitivity to Disturbance Signals
- 3.7 Time Domain Design
- 3.7.1 Process Control
- 3.7.2 Ziegler-Nichols Compensation
- 3.7.3 Chien-Hrones-Reswick Compensation
- 3.8 An Electric Rail Transportation System
- 3.9 Phase-Locked Loop for a CB Receiver
- 3.10 Bionic Eye
- 3.11 Summary
- References
- Problems
- Chapter 4 Root Locus Analysis
- 4.1 Preview
- 4.2 Pole-Zero Plots
- 4.2.1 Poles and Zeros
- 4.2.2 Graphical Evaluation
- 4.3 Root Locus for Feedback Systems
- 4.3.1 Angle Criterion
- 4.3.2 High and Low Gains
- 4.3.3 Root Locus Properties
- 4.4 Root Locus Construction
- 4.5 More About Root Locus
- 4.5.1 Root Locus Calibration
- 4.5.2 Computer-Aided Root Locus
- 4.6 Root Locus for Other Systems
- 4.6.1 Systems with Other Forms
- 4.6.2 Negative Parameter Ranges
- 4.6.3 Delay Effects
- 4.7 Design Concepts (Adding Poles and Zeros)
- 4.8 A Light-Source Tracking System
- 4.9 An Artificial Limb
- 4.10 Control of a Flexible Spacecraft
- 4.11 Bionic Eye
- 4.12 Summary
- References
- Problems
- Chapter 5 Root Locus Design
- 5.1 Preview
- 5.2 Shaping a Root Locus
- 5.3 Adding and Canceling Poles and Zeros
- 5.3.1 Adding a Pole or Zero

- 5.3.2 Canceling a Pole or Zero
- 5.4 Second-Order Plant Models
- 5.5 An Uncompensated Example System
- 5.6 Cascade Proportional Plus Integral (PI)
- 5.6.1 General Approach to Compensator Design
- 5.6.2 Cascade PI Compensation
- 5.7 Cascade Lag Compensation
- 5.8 Cascade Lead Compensation
- 5.9 Cascade Lag-Lead Compensation
- 5.10 Rate Feedback Compensation (PD)
- 5.11 Proportional-Integral-Derivative Compensation
- 5.12 Pole Placement
- 5.12.1 Algebraic Compensation
- 5.12.2 Selecting the Transfer Function
- 5.12.3 Incorrect Plant Transmittance
- 5.12.4 Robust Algebraic Compensation
- 5.12.5 Fixed-Structure Compensation
- 5.13 An Unstable High-Performance Aircraft
- 5.14 Control of a Flexible Space Station
- 5.15 Control of a Solar Furnace
- 5.16 Summary
- References
- Problems
- Chapter 6 Frequency Response Analysis
- 6.1 Preview
- 6.2 Frequency Response
- 6.2.1 Forced Sinusoidal Response
- 6.2.2 Frequency Response Measurement
- 6.2.3 Response at Low and High Frequencies
- 6.2.4 Graphical Frequency Response Methods
- 6.3 Bode Plots
- 6.3.1 Amplitude Plots in Decibels
- 6.3.2 Real Axis Roots
- 6.3.3 Products of Transmittance Terms
- 6.3.4 Complex Roots
- 6.4 Using Experimental Data
- 6.4.1 Finding Models
- 6.4.2 Irrational Transmittances
- 6.5 Nyquist Methods
- 6.5.1 Generating the Nyquist (Polar) Plot
- 6.5.2 Interpreting the Nyquist Plot
- 6.6 Gain Margin
- 6.7 Phase Margin
- 6.8 Relations between Closed-Loop and Open-Loop Frequency Response

- 6.9 Frequency Response of a Flexible Spacecraft
- 6.10 Summary
- References
- Problems
- Chapter 7 Frequency Response Design
- 7.1 Preview
- 7.2 Relation between Root Locus, Time Domain, and Frequency Domain
- 7.3 Compensation Using Bode Plots
- 7.4 Uncompensated System
- 7.5 Cascade Proportional Plus Integral (PI) and Cascade Lag Compensations
- 7.6 Cascade Lead Compensation
- 7.7 Cascade Lag-Lead Compensation
- 7.8 Rate Feedback Compensation
- 7.9 Proportional-Integral-Derivative Compensation
- 7.10 An Automobile Driver as a Compensator
- 7.11 Summary
- References
- Problems
- Chapter 8 Space Analysis
- 8.1 Preview
- 8.2 State Space Representation
- 8.2.1 Phase-Variable Form
- 8.2.2 Dual Phase-Variable Form
- 8.2.3 Multiple Inputs and Outputs
- 8.2.4 Physical State Variables
- 8.2.5 Transfer Functions
- 8.3 State Transformations and Diagonalization
- 8.3.1 Diagonal Forms
- 8.3.2 Diagonalization Using Partial-Fraction Expansion
- 8.3.3 Complex Conjugate Characteristic Roots
- 8.3.4 Repeated Characteristic Roots
- 8.4 Time Response from State Equations
- 8.4.1 Laplace Transform Solution
- 8.4.2 Time-Domain Response of First-Order Systems
- 8.4.3 Time-Domain Response of Higher-Order Systems
- 8.4.4 System Response Computation
- 8.5 Stability
- 8.5.1 Asymptotic Stability
- 8.5.2 BIBO Stability
- 8.5.3 Internal Stability
- 8.6 Controllability and Observability
- 8.6.1 The Controllability Matrix
- 8.6.2 The Observability Matrix
- 8.6.3 Controllability, Observability and Pole-Zero Cancellation

- 8.6.4 Causes of Uncontrollability
- 8.7 Inverted Pendulum Problems
- 8.8 Summary
- Chapter 9 Space Design
- 9.1 Preview
- 9.2 State Feedback and Pole Placement
- 9.2.1 Stabilizability
- 9.2.2 Choosing Pole Locations
- 9.2.3 Limitations of State Feedback
- 9.3 Tracking Problems
- 9.3.1 Integral Control
- 9.4 Observer Design
- 9.4.1 Control Using Observers
- 9.4.2 Separation Property
- 9.4.3 Observer Transfer Function
- 9.5 Reduced-Order Observer Design
- 9.5.1 Separation Property
- 9.5.2 Reduced-Order Observer Transfer Function
- 9.6 A Magnetic Levitation System
- 9.7 Summary
- Chapter 10 State Space Methods
- 10.1 Preview
- 10.2 The Linear Quadratic Regulator Problem
- 10.2.1 Properties of the LQR Design
- 10.2.2 Return Difference Inequality
- 10.2.3 Optimal Root Locus
- 10.3 Optimal Observers--The Kalman Filter
- 10.4 The Linear Quadratic Gaussian (LQG) Problem
- 10.4.1 Critique of LGQ
- 10.5 Robustness
- 10.5.1 Feedback Properties
- 10.5.2 Uncertainty Modeling
- 10.5.3 Robust Stability
- 10.6 Loop Transfer Recovery(LTR)
- 10.7 HY Control
- 10.7.1 A Brief History
- 10.7.2 Some Preliminaries
- 10.7.3 HY Control: Solution
- 10.7.4 Weights in HY Control Problem
- 10.8 Summary
- References
- Problems
- Chapter 11 Control
- 11.1 Preview

- 11.2 Computer Processing
- 11.2.1 Computer History and Trends
- 11.3 A/D and D/A Conversion
- 11.3.1 Analog-to-Digital Conversion
- 11.3.2 Sample and Hold
- 11.3.3 Digital-to-Analog Conversion
- 11.4 Discrete-Time Signals
- 11.4.1 Representing Sequences
- 11.4.2 Z-Transformation and Properties
- 11.4.3 Inverse z-Transform
- 11.5 Sampling
- 11.6 Reconstruction of Signals from Samples
- 11.6.1 Representing Sampled Signals with Impulses
- 11.6.2 Relation between the z-Transform and the Laplace Transform
- 11.6.3 The Sampling Theorem
- 11.7 Discrete-Time Systems
- 11.7.1 Difference Equations Response
- 11.7.2 Z-Transfer Functions
- 11.7.3 Block Diagrams and Signal Flow Graphs
- 11.7.4 Stability and the Bilinear Transformation
- 11.7.5 Computer Software
- 11.8 State-Variable Descriptions of Discrete-Time Systems
- 11.8.1 Simulation Diagrams and Equations
- 11.8.2 Response and Stability
- 11.8.3 Controllability and Observability
- 11.9 Digitizing Control Systems
- 11.9.1 Step-Invariant Approximation
- 11.9.2 z-Transfer Functions of Systems with Analog Measurements
- 11.9.3 A Design Example
- 11.10 Direct Digital Design
- 11.10.1 Steady State Response
- 11.10.2 Deadbeat Systems
- 11.10.3 A Design Example
- 11.11 Summary
- References
- Problems
- Appendix A Matrix Algebra
- A.1 Preview
- A.2 Nomenclature
- A.3 Addition and Subtraction
- A.4 Transposition
- A.5 Multiplication
- A.6 Determinants and Cofactors
- A.7 Inverse

- A.8 Simultaneous Equations
- A.9 Eigenvalues and Eigenvectors
- A.10 Derivative of a Scalar with Respect to a Vector
- A.11 Quadratic Forms and Symmetry
- A.12 Definiteness
- A.13 Rank
- A.14 Partitioned Matrices
- Problems
- Appendix B Laplace Transform
- B.1 Preview
- B.2 Definition and Properties
- B.3 Solving Differential Equations
- B.4 Partial Fraction Expansion
- B.5 Additional Properties of the Laplace Transform
- Real Translation
- Second Independent Variable
- Final Value and Initial Value Theorems
- Convolution Integral
- Index