Table of contents

- I Design
- 1 Parallel Computers and Computation
- Parallelism and Computing
- A Parallel Machine Model
- Other Parallel Machine Models
- A Parallel Programming Model
- Parallel Algorithms
- 2 Designing Parallel Algorithms
- Methodical Design
- Partitioning
- Communication
- Agglomeration
- Mapping
- · Case Study: Climate Modeling
- Case Study: Floorplan Optimization
- Case Study: Computational Chemistry
- 3 A Quantitative Basis for Design
- Defining Performance
- Approaches to Performance
- Modeling Performance
- Performance Modeling and Design
- Experimental Studies
- Evaluating Implementations
- A Refined Communication Cost Model
- Input/Output
- 4 Putting It All Together
- Modular Design
- Modularity and Parallel Programming
- Data Distribution
- Sequential Composition
- Performance Analysis
- Templates
- II Tools
- 5 Fortran M
- Introduction
- Concurrency
- Communication
- Unstructured Communication
- Probing for Pending Messages
- Argument Passing
- Determinism
- Mapping
- Performance Issues
- Case Study: Finite Difference

- Case Study: Floorplan Optimization
- 6 Modular C Data Parallel Languages
- Data Parallelism
- Fortran
- 90 High Performance Fortran
- Integrating Task and Data Parallelism
- 7 Message Passing Libraries
- The MPI Programming Model
- MPI Basics
- Global Operations
- Querying Received and Pending Messages
- Derived Data Types
- Modularity
- Performance
- Other MPI Features