- **Preface** (p. xvii)
- List of Contributors (p. xix)
- 1 On Offline Arabic Character Recognition (p. 1)
- 1 Introduction (p. 1)
- 2 Structure of the Proposed OCR System (p. 4)
- **3 Preprocessing** (p. 6)
- 4 Segmentation (p. 7)
- 4.1 Line Segmentation and Zoning (p. 8)
- 4.2 Word Segmentation (p. 8)
- 4.3 Segmentation of Words into Individual Characters (p. 9)
- 5 Feature Extraction (p. 10)
- **6 Recognition Strategy** (p. 11)
- 6.1 Recognition Using the Syntactic Approach (p. 12)
- **6.2 Recognition Using the Neural Network Approach** (p. 13)
- 7 Experimental Results and Analysis (p. 15)
- **7.1 System Training** (p. 15)
- 7.2 Experimental Set-up (p. 15)
- 7.3 Results Achieved (p. 15)
- **8 Conclusion** (p. 17)
- Acknowledgement (p. 17)
- **References** (p. 17)
- 2 License Plate Recognition System: Saudi Arabian Case (p. 19)
- **1 Introduction** (p. 19)
- 2 Structure of a Typical LPR System (p. 20)
- 3 Image Acquisition (p. 21)
- 4 License Plate Extraction (p. 21)
- **4.1 Vertical Edge Detection** (p. 23)
- **4.2 Filtering** (p. 23)
- **4.3 Vertical Edge Matching** (p. 24)
- 4.4 Black to White Ratio and Plate Extraction (p. 26)
- 5 License Plate Segmentation (p. 26)
- 6 Character Recognition (p. 26)
- **6.1 Normalization** (p. 26)
- **6.2 Template Matching** (p. 27)
- 7 Experimental Analysis and Results (p. 27)
- **8 Conclusion** (p. 32)
- **References** (p. 32)
- 3 Algorithms for Extracting Textual Characters in Color Video (p. 33)
- **1 Introduction** (p. 33)
- 2 Prior and Related Work (p. 34)
- 3 Our New Text Extraction Algorithm (p. 35)
- 3.1 Step 1: Identify Potential Text Line Segments (p. 36)
- 3.2 Step 2: Text Block Detection (p. 38)
- 3.3 Step 3: Text Block Filtering (p. 38)
- 3.4 Step 4: Boundary Adjustments (p. 38)
- 3.5 Step 5: Bicolor Clustering (p. 38)

- 3.6 Step 6: Artifact Filtering (p. 39)
- 3.7 Step 7: Contour Smoothing (p. 39)
- 4 Experimental Results and Performance (p. 40)
- 5 Using Multiframe Edge Information to Improve Precision (p. 47)
- 5.1 Step 3(b): Text Block Filtering Based on Multiframe Edge Strength (p. 47)
- 6 Discussion and Concluding Remarks (p. 47)
- **References** (p. 48)
- 4 Separation of Handwritten Touching Digits: A Multiagents Approach (p. 51)
- **1 Introduction** (p. 51)
- **2 Previous Work** (p. 52)
- 3 Digitizing and Processing (p. 56)
- 4 Segmentation Algorithm (p. 56)
- 4.1 Extraction of Feature Points (p. 56)
- 4.2 The Employed Agents (p. 57)
- 5 Experimental Results (p. 61)
- 6 Conclusions and Future Work (p. 65)
- **References** (p. 65)
- 5 Prototype-based Handwriting Recognition Using Shape and Execution Prototypes (p. 67)
- **1 Introduction** (p. 67)
- 2 A Handwriting Generation Process Model (p. 68)
- 3 The First Stages of the Handwriting Recognition System (p. 70)
- **3.1 Character Segmentation** (p. 70)
- **3.2 Feature Extraction** (p. 71)
- 4 The Execution of the Prototype Extraction Method (p. 73)
- 4.1 Grouping Training Samples (p. 74)
- **4.2 Refinement of the Prototypes** (p. 75)
- 4.3 Experimental Evaluation of the Prototype Extraction Method (p. 76)
- 5 Prototype-based Classification (p. 82)
- 5.1 The Prototype-based Classifier Architecture (p. 82)
- 5.2 Experimental Evaluation of the Prototype Initialization (p. 83)
- 5.3 Prototype Pruning to Increase Knowledge Condensation (p. 84)
- 5.4 Discussion and Comparison to Related Work (p. 85)
- **6 Conclusions** (p. 87)
- Acknowledgement (p. 87)
- **References** (p. 87)
- 6 Logo Detection in Document Images with Complex Backgrounds (p. 89)
- **1 Introduction** (p. 89)
- 2 Detection of Potential Logos (p. 90)
- 3 Verification of Potential Logos (p. 91)
- 3.1 Feature Extraction by Geostatistics (p. 91)
- 3.2 Neural Network-based Classifier (p. 93)
- 4 Experimental Results (p. 93)
- **5 Conclusions** (p. 97)
- **References** (p. 97)
- 7 An Intelligent Online Signature Verification System (p. 99)

- **1 Introduction** (p. 99)
- **1.1 Process and System** (p. 100)
- 1.2 The Evaluation of an Online Signature Verification System (p. 101)
- 2 Literature Overview (p. 102)
- **2.1 Conventional Mathematical Approaches** (p. 102)
- **2.2 Dynamic Programming Approach** (p. 104)
- 2.3 Hidden Markov Model-Based Methods (p. 105)
- 2.4 The Artificial Neural Networks Approach (p. 106)
- 2.5 Signature Verification Product Market Survey (p. 106)
- 3 A Typical Online Signature Verification System (p. 107)
- **3.1 Data Acquisition** (p. 107)
- 3.2 Feature Extraction (p. 110)
- **3.3 Feature Matching** (p. 111)
- **3.4 Verification** (p. 112)
- **5 Conclusions** (p. 116)
- 4 Proposed Online Signature Verification Applications (p. 113)
- 4.1 System Password Authentication (p. 113)
- 4.2 Internet E-commerce Application (p. 114)
- References (p. 116)
- 8 Hybrid Fingerprint Recognition using Minutiae and Shape (p. 119)
- **1 Introduction** (p. 119)
- **2 Elastic Deformations** (p. 120)
- 3 Elastic Minutiae Matching (p. 122)
- 3.1 Local Minutiae Matching (p. 122)
- **3.2 Global Minutiae Matching** (p. 123)
- 4 Shape Matching (p. 126)
- **5 Results** (p. 126)
- **6 Conclusions** (p. 129)
- Acknowledgement (p. 129)
- **References** (p. 129)
- 9 Personal Authentication Using the Fusion of Multiple Palm-print Features (p. 131)
- **1 Introduction** (p. 131)
- 2 Preprocessing (p. 133)
- 2.1 Step 1: Image Thresholding (p. 134)
- **2.2 Step 2: Border Tracing** (p. 134)
- 2.3 Step 3: Wavelet-based Segmentation (p. 135)
- 2.4 Step 4: Region of Interest (ROI) Generation (p. 135)
- **3 Feature Extraction** (p. 135)
- 4 Enrollment and Verification Processes (p. 136)
- **4.1 Multitemplate Matching Approach** (p. 136)
- 4.2 Multimodal Authentication with PBF-based Fusion (p. 137)
- **4.3 Adaptive Thresholding** (p. 139)
- 5 Experimental Results (p. 140)
- 5.1 Experimental Environment (p. 140)
- 5.2 Verification Using a Template Matching Algorithm (p. 140)
- 10 Intelligent Iris Recognition Using Neural Networks (p. 145)

- 5.3 Verification Using PBF-based Fusion (p. 141)
- **6 Conclusions** (p. 142)
- **References** (p. 142)
- **1 Introduction** (p. 145)
- 2 Literature Review (p. 147)
- 3 Some Groundbreaking Techniques (p. 148)
- **3.1 Daugman's Method** (p. 149)
- **3.2 Boles's Method** (p. 150)
- 3.3 Method of Dyadic Wavelet Transform Zero Crossing (p. 151)
- **4 Neural Networks** (p. 154)
- 4.1 Multilayer Feed-forward Neural Networks (MFNNs) (p. 154)
- 4.2 Radial Basis Function Neural Networks (RBFNNs) (p. 156)
- 5 Proposed Method (p. 158)
- 5.1 Localizing the Iris (p. 158)
- **5.2 Finding the Contour** (p. 159)
- **5.3 Feature Extraction** (p. 159)
- **5.4 Iris Pattern Recognition** (p. 162)
- **6 Experimental Results** (p. 162)
- **6.1 Results for an MFNN** (p. 162)
- **6.2 Results for an RBFNN** (p. 162)
- 7 Graphic User Interface (GUI) (p. 164)
- 8 Concluding Remarks (p. 166)
- **References** (p. 166)
- 11 Pose-invariant Face Recognition Using Subspace Techniques (p. 169)
- **1 Introduction** (p. 169)
- **1.1 Background** (p. 170)
- **1.2 The Problem of Pose** (p. 171)
- 2 Review of Biometric Systems (p. 172)
- 2.1 Summary of the Performance of Different Biometrics (p. 173)
- 2.2 Selecting the Right Biometric Technology (p. 177)
- 2.3 Multimodal Biometric Systems (p. 177)
- 3 Face Recognition Algorithms (p. 178)
- 3.1 Template-based Face Recognition (p. 180)
- 3.2 Appearance-based Face Recognition (p. 180)
- 3.3 Model-based Face Recognition (p. 181)
- 4 Linear Subspace Techniques (p. 183)
- 4.1 Principal Component Analysis (p. 184)
- **4.2 Linear Discriminant Analysis** (p. 185)
- 4.3 Independent Component Analysis (p. 189)
- 5.3 Experimental Results for Pose Estimation using LDA and PCA (p. 194)
- 5 A Pose-invariant System for Face Recognition (p. 191)
- 5.1 The Proposed Algorithm (p. 192)
- 5.2 Pose Estimation using LDA (p. 192)
- **5.4 View-specific Subspace Decomposition** (p. 194)
- 5.5 Experiments on the Pose-invariant Face Recognition System (p. 195)
- **6 Concluding Remarks** (p. 198)

- **References** (p. 198)
- 12 Developmental Vision: Adaptive Recognition of Human Faces by Humanoid Robots (p. 201)
- **1 Introduction** (p. 201)
- 2 Adaptive Recognition Based on Developmental Learning (p. 202)
- **2.1 Human Psycho-physical Development** (p. 202)
- 2.2 Machine (Robot) Psycho-physical Development (p. 203)
- **2.3 Developmental Learning** (p. 204)
- **2.4 Questions to Ponder** (p. 204)
- 3 Developmental Learning of Facial Image Detection (p. 205)
- 3.1 Current Face Detection Techniques (p. 205)
- 3.2 Criteria of Developmental Learning for Facial Image Detection (p. 206)
- **3.3 Neural Networks** (p. 206)
- **3.4 Color Space Transformation** (p. 207)
- 3.5 RCE Adaptive Segmentation (p. 210)
- **3.6 Implementation** (p. 218)
- **3.7 Questions to Ponder** (p. 218)
- 3.8 Experimental Results (p. 220)
- 4 Developmental Learning of Facial Image Recognition (p. 222)
- **4.1 Wavelets** (p. 222)
- 4.2 Wavelet Packet Analysis (p. 223)
- 4.3 Feature Extraction by Wavelet Packet Analysis (p. 224)
- 4.4 Hidden Markov Models (p. 227)
- 4.5 Feature Classification by Hidden Markov Models (p. 234)
- **4.6 Questions to Ponder** (p. 234)
- **4.7 Experimental Results** (p. 235)
- **5 Discussion** (p. 236)
- **References** (p. 237)
- 13 Empirical Study on Appearance-based Binary Age Classification (p. 241)
- **1 Introduction** (p. 242)
- **2 Related Works** (p. 243)
- 3 Description of the Proposed Age Classification System (p. 243)
- **3.1 Database** (p. 244)
- 3.2 Segmentation of the Facial Region (p. 245)
- **3.3 Preprocessing** (p. 246)
- **3.4 Feature Extraction** (p. 246)
- 3.5 Classifying People into Age Groups (p. 246)
- 4 Empirical Analysis (p. 247)
- 4.1 Performance of Data Projection Techniques (p. 247)
- 4.2 The Effect of Preprocessing and Image Resolution (p. 248)
- 4.3 The Effect of Pose Variation (p. 248)
- **4.4** The Effect of Lighting Conditions (p. 249)
- **4.5** The Effect of Occlusion (p. 249)
- Appendix A Data Projection Techniques (p. 253)
- 4.6 The Impact of Gender on Age Classification (p. 250)
- 4.7 Classifier Accuracies Across the Age Groups (p. 251)

- **5 Conclusions** (p. 252)
- A.1 Principal Component Analysis (PCA) (p. 253)
- A.2 Non-Negative Matrix Factorization (NMF) (p. 253)
- Appendix B Fundamentals of Support Vector Machines (p. 253)
- Acknowledgement (p. 254)
- **References** (p. 254)
- 14 Intelligent Recignition in Medical Pattern Understanding and Cognitive Analysis (p. 257)
- 1 **Introduction** (p. 257)
- 2 Preliminary Transformation of Medical Images (p. 259)
- 3 Structural Descriptions of the Examined Structures (p. 261)
- 4 Coronary Vessel Cognitive Analysis (p. 263)
- 5 Understanding of Lesions in the Urinary Tract (p. 265)
- 6 Syntactic Methods Supporting Diagnosis of Pancreatitis and Pancreatic Neoplasm (p. 268)
- 7 Semantic Analysis of Spinal Cord NMR Images (p. 271)
- **8 Conclusions** (p. 272)
- **References** (p. 273)
- 15 The Roadmap for Recognizing Regions of Interest in Medical Images (p. 275)
- **1 Introduction** (p. 275)
- 2 Convolutional Primitive Segmentation (p. 276)
- 3 Thresholding Primitive Segmentation (p. 280)
- 4 Morphological Primitive Segmentation (p. 280)
- **4.1 Erosion** (p. 280)
- **4.2 Dilation** (p. 281)
- **4.3 Opening and Closing** (p. 281)
- 5 Hybridizing the Primitive Segmentation Operators (p. 281)
- 6 Region Identification Based on Fuzzy Logic (p. 285)
- **6.1 Experimental Results** (p. 289)
- **7 Conclusions** (p. 293)
- References (p. 294)
- 16 Feature Extraction and Compression with Discriminative and Nonlinear Classifiers and Applications in Speech Recognition (p. 297)
- **1 Introduction** (p. 298)
- 2 Standard Feature Extraction Methods (p. 300)
- **2.1 Linear Discriminant Analysis** (p. 300)
- 2.2 Principal Component Analysis (p. 301)
- 3 The Minimum Classification Error Training Algorithm (p. 301)
- 3.1 Derivation of the MCE Criterion (p. 301)
- 3.2 Using MCE Training Algorithms for Dimensionality Reduction (p. 303)
- 4 Support Vector Machines (p. 304)
- **4.1 Constructing an SVM** (p. 304)
- **4.2 Multiclass SVM Classifiers** (p. 306)
- 5 Feature Extraction and Compression with MCE and SVM (p. 307)
- 5.1 The Generalized MCE Training Algorithm (p. 307)
- 5.2 Reduced-dimensional SVM (p. 307)

- 6 Classification Experiments (p. 308)
- **6.1 Deterding Database Experiments** (p. 309)
- **6.2 TIMIT Database Experiments** (p. 311)
- **7 Conclusions** (p. 316)
- **References** (p. 317)
- 17 Improving Mine Recognition through Processing and Dempster-Shafer Fusion of Multisensor Data (p. 319)
- **1 Introduction** (p. 319)
- 2 Data Presentation and Preprocessing (p. 320)
- **2.1 IR Data** (p. 320)
- **2.2 GPR Data** (p. 321)
- **2.3 MD Data** (p. 323)
- **3 Region Selection** (p. 324)
- **3.1 IR Regions** (p. 324)
- **3.2 GPR Regions** (p. 325)
- **3.3 MD Regions** (p. 325)
- 4 Choice of Measures and Their Extraction (p. 327)
- **4.1 IR Measures** (p. 327)
- **4.2 GPR Measures** (p. 328)
- **4.3 MD Measures** (p. 333)
- 5 Modeling of Measures in Terms of Belief Functions and Their Discounting (p. 333)
- **5.1 IR Measures** (p. 334)
- 5.2 GPR A-scan and Preprocessed C-scan Measures (p. 335)
- 5.3 GPR B-scan (Hyperbola) Measures (p. 336)
- **5.4 MD Measures** (p. 336)
- 5.5 Discounting Factors (p. 337)
- 6 Region Association, Combination of Measures and Decision (p. 338)
- **6.1 Region Association** (p. 338)
- **6.2 Combination of Masses** (p. 339)
- **6.3 Decision** (p. 340)
- **7 Results** (p. 341)
- 18 Fast Object Recognition Using Dynamic Programming from a Combination of Salient Line Groups (p. 345)
- **8 Conclusion** (p. 341)
- Acknowledgement (p. 342)
- **References** (p. 342)
- **1 Introduction** (p. 345)
- 2 Previous Research (p. 346)
- **3 Junction Extraction** (p. 347)
- 4 Energy Model for the Junction Groups (p. 348)
- 5 Energy Minimization (p. 349)
- 6 Collinear Criterion of Lines (p. 351)
- **6.1 Parallelism** (p. 351)
- **6.2 Normal Distance** (p. 352)
- 7 Energy Model for the Junction Groups (p. 353)
- **9 Conclusions** (p. 360)

- **8 Experiments** (p. 354)
- **8.1 Line Group Extraction** (p. 355)
- **8.2** Collinearity Tests for Random Lines (p. 359)
- **References** (p. 360)
- 19 Holo-Extraction and Intelligent Recognition of Digital Curves Scanned from Paper Drawings (p. 363)
- **1 Introduction** (p. 363)
- 2 Review of Current Vectorization Methods (p. 364)
- 2.1 The Hough Transform-based Method (p. 365)
- 2.2 Thinning-based Methods (p. 365)
- 2.3 The Contour-based Method (p. 365)
- 2.4 The Sparse Pixel-based Method (p. 365)
- **2.5 Mesh Pattern-based Methods** (p. 365)
- 2.6 Black Pixel Region-based Methods (p. 366)
- 2.7 The Requirements for Holo-extraction of Information (p. 366)
- 3 Construction of the Networks of SCRs (p. 367)
- 3.1 Generating Adjacency Graphs of Runs (p. 367)
- 3.2 Constructing Single Closed Regions (SCRs) (p. 368)
- 3.3 Building Adjacency Graphs of SCRs (p. 370)
- 3.4 Constructing the Networks of SCRs (p. 371)
- 4 A Bridge from the Raster Image to Understanding and 3D Reconstruction (p. 373)
- 4.1 Separating the Annotations and the Outlines of Projections of Parts (p. 373)
- 5.1 Extracting the Representative Points of Digital Curves (p. 379)
- **4.2 Vectorization** (p. 375)
- **4.3 3D Reconstruction** (p. 377)
- 5 Classification of Digital Curves (p. 379)
- 5.2 Fitting a Straight line to the Set of Points (p. 380)
- 5.3 Fitting a Circular Arc to the Set of Points (p. 381)
- **5.4 Determining the Type** (p. 382)
- 6 Decomposition of Combined Lines Using Genetic Algorithms (p. 382)
- **6.1 Initial Population** (p. 382)
- **6.2 Fitness Function** (p. 384)
- **6.3 Crossover** (p. 384)
- **6.4 Mutation** (p. 384)
- **6.5 Selection** (p. 385)
- **6.6 Convergence and Control Parameters** (p. 385)
- 6.7 Determination of the Relationships Between the Segments (p. 385)
- **6.8 Software Prototype** (p. 386)
- **7 Conclusions** (p. 386)
- References (p. 387)
- 20 Topological Segmentation and Smoothing of Discrete Curve Skeletons (p. 389)
- **1 Introduction** (p. 389)
- **2 Basic Definitions** (p. 390)
- 3 Topological Segmentation (p. 392)
- 3.1 Component Counting and Labeling (p. 392)
- **3.2** Classification of Skeleton Voxels (p. 392)

- **3.3 Local Junction Classification** (p. 393)
- **3.4 Thick Junction Resolution** (p. 394)
- **3.5 Branch Formation** (p. 395)
- **4 Branch Filtering** (p. 397)
- **4.1 Branch Classification** (p. 397)
- **4.2 Noise Segment Removal** (p. 398)
- 5 Branch Smoothing (p. 400)
- 5.1 Polynomial Branch Representation (p. 400)
- 5.2 Augmented Merit Functions (p. 401)
- **6 Results** (p. 403)
- **7 Discussion** (p. 407)
- Acknowledgement (p. 408)
- **References** (p. 408)
- 21 Applications of Clifford-valued Neural Networks to Pattern Classification and Pose Estimation (p. 411)
- **1 Introduction** (p. 411)
- 2 Geometric Algebra: An Outline (p. 412)
- **2.1 Basic Definitions** (p. 412)
- 2.2 The Geometric Algebra of nD Space (p. 413)
- **2.3** The Geometric Algebra of 3D Space (p. 414)
- **2.4 Rotors** (p. 414)
- **2.5 Conformal Geometric Algebra** (p. 415)
- 3 Real-valued Neural Networks (p. 416)
- 4 Complex MLP and Quaternionic MLP (p. 417)
- 5 Clifford-valued Feed-forward Neural Networks (p. 418)
- 5.1 The Activation Function (p. 418)
- **5.2** The Geometric Neuron (p. 418)
- 5.3 Feed-forward Clifford-valued Neural Networks (p. 419)
- **6 Learning Rule** (p. 421)
- **6.1 Multidimensional Back-propagation Training Rule** (p. 421)
- 6.2 Geometric Learning Using Genetic Algorithms (p. 422)
- 7 Support Vector Machines in the Geometric Algebra Framework (p. 422)
- 7.1 Support Vector Machines (p. 422)
- **7.2 Support Multivector Machines** (p. 423)
- 7.3 Generating SMVMs with Different Kernels (p. 424)
- 7.4 Design of Kernels Involving the Clifford Geometric Product for Nonlinear Support Multivector Machines (p. 424)
- 7.5 Design of Kernels Involving the Conformal Neuron (p. 425)
- 8 Clifford Moments for 2D Pattern Classification (p. 426)
- 9 Experimental Analysis (p. 428)
- 9.1 Test of the Clifford-valued MLP for the XOR Problem (p. 428)
- 9.2 Classification of 2D Patterns in Real Images (p. 429)
- **10 Conclusions** (p. 436)
- **9.3 Estimation of 3D Pose** (p. 431)
- 9.4 Performance of SMVMs Using Kernels Involving the Clifford Product (p. 432)
- 9.5 An SMVM Using Clustering Hyperspheres (p. 434)

- **References** (p. 436)
- 22 Intelligent Recognition: Components of the Short-time Fourier Transform vs. Conventional Approaches (p. 439)
- **1 Introduction** (p. 440)
- 2 Theoretical Analysis (p. 440)
- **3 Application** (p. 447)
- **4 Conclusions** (p. 448)
- Acknowledgement (p. 450)
- **References** (p. 450)
- 23 Conceptual Data Classification: Application for Knowledge Extraction (p. 453)
- **1 Introduction** (p. 453)
- 2 Mathematical Foundations (p. 454)
- 2.1 Definition of a Binary Context (p. 454)
- **2.2 Definition of a Formal Concept** (p. 455)
- **2.3 Galois Connection** (p. 456)
- **2.4 Optimal Concept or Rectangle** (p. 457)
- 3 An Approximate Algorithm for Minimal Coverage of a Binary Context (p. 459)
- 4 Conceptual Knowledge Extraction from Data (p. 462)
- 4.1 Supervised Learning by Associating Rules to Optimal Concepts (p. 462)
- 4.2 Automatic Entity Extraction from an Instance of a Relational Database (p. 463)
- 4.3 Software Architecture Development (p. 465)
- 4.4 Automatic User Classification in the Network (p. 465)
- **5 Conclusion** (p. 465)
- **References** (p. 466)
- 24 Cryptographic Communications With Chaotic Semiconductor Lasers (p. 469)
- **1 Introduction** (p. 470)
- 2 Semiconductor Lasers with Optical Feedback (p. 472)
- **2.1 Step 1: Choice of the Laser** (p. 472)
- 2.2 Step 2: Determination of the Laser Equations and Parameters (p. 473)
- 2.3 Step 3: Choice of Some Accessible Parameter for Chaoticity (p. 475)
- 2.4 Step 4: Synchronization of the Chaotic Transmitter and Receiver Systems (p. 476)
- 3 Applications to Cryptographic Communications (p. 478)
- **3.1 Chaotic Masking** (p. 478)
- **3.2 Chaotic Switching** (p. 479)
- **4 Conclusions** (p. 481)
- **References** (p. 482)
- **Index** (p. 485)