Table of contents

- Preface (p. xiii)
- 1 Low-Power Cmos VIsi Design (p. 1)
- **1.1 Introduction** (p. 1)
- 1.2 Sources of Power Dissipation (p. 2)
- 1.3 Designing for Low Power (p. 3)
- **1.4 Conclusions** (p. 5)
- References (p. 6)
- 2 Physics of Power Dissipation in Cmos Fet Devices (p. 7)
- **2.1 Introduction** (p. 7)
- 2.2 Physics of Power Dissipation in MOSFET Devices (p. 8)
- **2.2.1 The MIS Structure** (p. 8)
- 2.2.2 Long-Channel MOSFET (p. 17)
- **2.2.3 Submicron MOSFET** (p. 21)
- 2.2.4 Gate-Induced Drain Leakage (p. 28)
- 2.3 Power Dissipation in CMOS (p. 29)
- 2.3.1 Short-Circuit Dissipation (p. 30)
- 2.3.2 Dynamic Dissipation (p. 32)
- **2.3.3 The Load Capacitance** (p. 35)
- 2.4 Low-Power VLSI Design: Limits (p. 38)
- **2.4.1 Principles of Low-Power Design** (p. 39)
- **2.4.2 Hierarchy of Limits** (p. 39)
- 2.4.3 Fundamental Limits (p. 40)
- **2.4.4 Material Limits** (p. 42)
- **2.4.5 Device Limits** (p. 43)
- **2.4.6 Circuit Limits** (p. 45)
- **2.4.7 System Limits** (p. 47)
- **2.4.8 Practical Limits** (p. 49)
- 2.4.9 Quasi-Adiabatic Microelectronics (p. 49)
- **2.5 Conclusions** (p. 50)
- **References** (p. 50)
- 3 Power Estimation (p. 53)
- 3.1 Modeling of Signals (p. 56)
- 3.2 Signal Probability Calculation (p. 58)
- 3.2.1 Signal Probability Using Binary Decision Diagrams (p. 59)
- 3.3 Probabilistic Techniques for Signal Activity Estimation (p. 61)
- 3.3.1 Switching Activity in Combinational Logic (p. 61)
- 3.3.2 Derivation of Activities for Static CMOS from Signal Probabilities (p. 69)
- 3.3.3 Switching Activity in Sequential Circuits (p. 72)
- 3.3.4 An Approximate Solution Method (p. 80)
- 3.4 Statistical Techniques (p. 82)
- 3.4.1 Estimating Average Power in Combinatorial Circuits (p. 83)
- 3.4.2 Estimating Average Power in Sequential Circuits (p. 85)
- 3.5 Estimation of Glitching Power (p. 92)

- 3.5.1 Monte-Carlo-Based Estimation of Glitching Power (p. 94)
- **3.5.2 Delay Models** (p. 95)
- 3.6 Sensitivity Analysis (p. 99)
- **3.6.1 Power Sensitivity** (p. 100)
- 3.6.2 Power Sensitivity Estimation (p. 101)
- 3.6.3 Power Sensitivity Method to Estimate Minimum and Maximum Average Power (p. 103)
- 3.7 Power Estimation Using Input Vector Compaction (p. 108)
- 3.8 Power Dissipation in Domino CMOS (p. 110)
- 3.9 Circuit Reliability (p. 113)
- 3.10 Power Estimation at the Circuit Level (p. 116)
- 3.10.1 Power Consumption of CMOS Gates (p. 116)
- 3.11 High-Level Power Estimation (p. 119)
- 3.12 Information-Theory-Based Approaches (p. 122)
- 3.13 Estimation of Maximum Power (p. 125)
- 3.13.1 Test-Generation-Based Approach (p. 126)
- 3.13.2 Approach Using the Steepest Descent (p. 128)
- 3.13.3 Genetic-Algorithm-Based Approach (p. 135)
- 3.14 Summary and Conclusion (p. 136)
- **References** (p. 136)
- 4 Synthesis for Low Power (p. 143)
- **4.1 Behavioral Level Transforms** (p. 144)
- 4.1.1 Algorithm Level Transforms for Low Power (p. 144)
- 4.1.2 Power-Constrained Least-Squares Optimization for Adaptive and Nonadaptive Filters (p. 155)
- 4.1.3 Circuit Activity Driven Architectural Transformations (p. 158)
- 4.1.4 Architecture-Driven Voltage Scaling (p. 161)
- 4.1.5 Power Optimization Using Operation Reduction (p. 163)
- 4.1.6 Power Optimization Using Operation Substitution (p. 164)
- 4.1.7 Precomputation-Based Optimization for Low Power (p. 165)
- 4.2 Logic Level Optimization for Low Power (p. 169)
- 4.2.1 FSM and Combinational Logic Synthesis (p. 170)
- **4.2.2 Technology Mapping** (p. 183)
- **4.3 Circuit Level** (p. 185)
- 4.3.1 Circuit Level Transforms (p. 186)
- **4.3.2 CMOS Gates** (p. 187)
- **4.3.3 Transistor Sizing** (p. 192)
- 4.4 Summary and Future Directions (p. 194)
- **References** (p. 195)
- 5 Design and Test of Low-Voltage Cmos Circuits (p. 201)
- **5.1 Introduction** (p. 201)
- 5.2 Circuit Design Style (p. 203)
- **5.2.1 Nonclocked Logic** (p. 203)
- **5.2.2 Clocked Logic Family** (p. 207)
- 5.3 Leakage Current in Deep Submicrometer Transistors (p. 215)
- 5.3.1 Transistor Leakage Mechanisms (p. 215)

- 5.3.2 Leakage Current Estimation (p. 219)
- 5.4 Deep Submicrometer Device Design Issues (p. 222)
- 5.4.1 Short-Channel Threshold Voltage Roll-Off (p. 222)
- 5.4.2 Drain-Induced Barrier Lowering (p. 224)
- 5.5 Key to Minimizing SCE (p. 224)
- 5.6 Low-Voltage Circuit Design Techniques (p. 226)
- **5.6.1 Reverse V[subscript gs]** (p. 226)
- 5.6.2 Steeper Subthreshold Swing (p. 227)
- 5.6.3 Multiple Threshold Voltage (p. 228)
- 5.6.4 Multiple Threshold CMOS Based on Path Criticality (p. 236)
- 5.7 Testing Deep Submicrometer ICs with Elevated Intrinsic Leakage (p. 240)
- 5.8 Multiple Supply Voltages (p. 245)
- **5.9 Conclusions** (p. 249)
- **References** (p. 249)
- 6 Low-Power Static Ram Architectures (p. 253)
- **6.1 Introduction** (p. 253)
- 6.2 Organization of a Static RAM (p. 254)
- 6.3 MOS Static RAM Memory Cell (p. 255)
- **6.3.1 The 4T SRAM Cell** (p. 256)
- **6.3.2 The 6T SRAM Cell** (p. 257)
- **6.3.3 SRAM Cell Operation** (p. 258)
- **6.4 Banked Organization of SRAMs** (p. 259)
- **6.4.1 Divided Word Line Architecture** (p. 260)
- 6.5 Reducing Voltage Swings on Bit Lines (p. 260)
- **6.5.1 Pulsed Word Lines** (p. 261)
- **6.5.2 Self-Timing the RAM Core** (p. 261)
- 6.5.3 Precharge Voltage for Bit Lines (p. 262)
- 6.6 Reducing Power in the Write Driver Circuits (p. 263)
- 6.7 Reducing Power in Sense Amplifier Circuits (p. 265)
- 6.8 Method for Achieving Low Core Voltages from a Single Supply (p. 268)
- **6.9 Summary** (p. 269)
- **References** (p. 270)
- 7 Low-Energy Computing Using Energy Recovery Techniques (p. 272)
- 7.1 Energy Dissipation in Transistor Channel Using an RC Model (p. 273)
- 7.2 Energy Recovery Circuit Design (p. 277)
- 7.3 Designs with Partially Reversible Logic (p. 280)
- 7.3.1 Designs with Reversible Logic (p. 285)
- 7.3.2 Simple Charge Recovery Logic Modified from Static CMOS Circuits (p. 287)
- 7.3.3 Adiabatic Dynamic Logic (p. 290)
- 7.3.4 Energy Recovery SRAM Core (p. 293)
- 7.3.5 Another Core Organization: Column-Activated Memory Core (p. 296)
- 7.3.6 Energy Dissipation in Memory Core (p. 298)
- 7.3.7 Comparison of Two Memory Core Organizations (p. 298)
- 7.3.8 Design of Peripheral Circuits (p. 300)

- 7.3.9 Optimal Voltage Selection (p. 304)
- 7.4 Supply Clock Generation (p. 311)
- 7.5 Summary and Conclusions (p. 319)
- **References** (p. 320)
- 8 Software Design for Low Power (p. 321)
- **8.1 Introduction** (p. 321)
- 8.2 Sources of Software Power Dissipation (p. 322)
- **8.3 Software Power Estimation** (p. 324)
- **8.3.1 Gate Level Power Estimation** (p. 324)
- 8.3.2 Architecture Level Power Estimation (p. 324)
- 8.3.3 Bus Switching Activity (p. 325)
- 8.3.4 Instruction Level Power Analysis (p. 325)
- **8.4 Software Power Optimizations** (p. 329)
- **8.4.1** Algorithm Transformations to Match Computational Resources (p. 329)
- 8.4.2 Minimizing Memory Access Costs (p. 332)
- **8.4.3 Instruction Selection and Ordering** (p. 339)
- **8.4.4 Power Management** (p. 341)
- 8.5 Automated Low-Power Code Generation (p. 342)
- 8.6 Codesign for Low Power (p. 344)
- **8.6.1 Instruction Set Design** (p. 345)
- **8.6.2 Reconfigurable Computing (p. 346)**
- 8.6.3 Architecture and Circuit Level Decisions (p. 346)
- **8.7 Summary** (p. 346)
- **References** (p. 348)
- **Index** (p. 351)