Table of contents

- Preface (p. ix)
- 1 Structural analysis
- **1.1 Introduction** (p. 1)
- **1.2 Axial loading** (p. 1)
- 1.3 Axially loaded members (p. 4)
- **1.4 Poisson's ratio** (p. 8)
- **1.5 Temperature stresses** (p. 9)
- **Problems** (p. 14)
- 2 Bending
- **2.1 Introduction** (p. 16)
- 2.2 Shear force and bending moment (p. 17)
- 2.3 Bending stresses (p. 24)
- **Problems** (p. 33)
- 3 Torsion
- **3.1 Introduction** (p. 35)
- 3.2 Torsion of circular shafts (p. 37)
- 3.3 Transmission of power (p. 42)
- **Problems** (p. 43)
- 4 Linear and angular motion
- **4.1 Introduction** (p. 46)
- **4.2 Linear motion** (p. 46)
- 4.3 Two and three-dimensional linear motion (p. 52)
- **4.4 Angular motion** (p. 56)
- 4.5 Force and linear motion (p. 62)
- 4.6 Torque and angular motion (p. 67)
- 4.7 Linear and angular kinetic energy (p. 75)
- **Problems** (p. 78)
- 5 Mechanical oscillations
- **5.1 Introduction** (p. 84)
- 5.2 Simple harmonic motion (p. 85)
- 5.3 Undamped oscillations (p. 90)
- **5.4 Damped oscillations** (p. 95)
- 5.5 Forced oscillations (p. 97)
- **Problems** (p. 99)
- 6 Heat transfer
- **6.1 Introduction** (p. 102)
- **6.2 Conduction** (p. 103)
- **6.3 Convection** (p. 112)
- **6.4 Radiation** (p. 115)
- Problems (p. 118)
- 7 Fluid flow
- **7.1 Introduction** (p. 121)
- **7.2 Viscosity** (p. 121)
- 7.3 Power loss with bearings (p. 124)

- 7.4 Laminar and turbulent flow (p. 127)
- 7.5 Energy loss with fluids flowing through pipes (p. 128)
- **Problems** (p. 134)
- 8 Single phase a.c. theory
- **8.1 Introduction** (p. 136)
- 8.2 Reactance and susceptance (p. 139)
- 8.3 Phasor relationships for pure components (p. 139)
- 8.4 Impedance and admittance (p. 141)
- **8.5 Series a.c. circuits** (p. 142)
- **8.6 Parallel circuits** (p. 147)
- **8.7 Power** (p. 152)
- 8.8 Circuit analysis using PSpice (p. 159)
- **Problems** (p. 164)
- 9 Complex numbers
- **9.1 Introduction** (p. 167)
- 9.2 Complex numbers (p. 167)
- 9.3 Representing phasors by complex numbers (p. 176)
- **9.4 Impedance** (p. 179)
- Problems (p. 188)
- 10 Resonant circuits
- **10.1 Introduction** (p. 192)
- 10.2 Resonance with series circuits (p. 192)
- 10.3 Resonance with parallel circuits (p. 197)
- **Problems** (p. 203)
- 11 Complex waveforms
- **11.1 Introduction** (p. 204)
- **11.2 The Fourier series** (p. 204)
- 11.3 Circuit analysis with complex waveforms (p. 210)
- 11.4 Production of harmonics (p. 216)
- **Problems** (p. 220)
- 12 Systems
- **12.1 Introduction** (p. 222)
- **12.2 Basic principles** (p. 222)
- 12.3 Mathematical models (p. 223)
- 12.4 Information and signals (p. 224)
- **12.5 Signal processing** (p. 226)
- 12.6 Examples of electronic systems (p. 238)
- **Problems** (p. 242)
- 13 Control systems
- **13.1 Introduction** (p. 244)
- **13.2 Basic principles** (p. 244)
- 13.3 Measurement systems (p. 250)
- 13.4 Electrical switching (p. 253)
- 13.5 Speed control of motors (p. 256)
- **Problems** (p. 260)
- **Answers** (p. 261)

• Index (p. 273)