Contents

Preface xv

Part 1 Basics 2

Introduction to Mechanical Engineering Design 3 Design 4 Mechanical Engineering Design 5 Phases and Interactions of the Design Process 5 Design Tools and Resources 8

- **1–5** The Design Engineer's Professional Responsibilities 10
- **1–6** Standards and Codes 12
- **1–7** Economics 12
- **1–8** Safety and Product Liability 15
- **1–9** Stress and Strength 15
- 1-10 Uncertainty 16
- **1–11** Design Factor and Factor of Safety 17
- 1–12 Reliability 18
- **1–13** Dimensions and Tolerances 19
- **1–14** Units 21
- **1–15** Calculations and Significant Figures 22
- **1–16** Design Topic Interdependencies 23
- 1-17 Power Transmission Case Study Specifications 24Problems 26

2 Materials 31

- **2–1** Material Strength and Stiffness 32
- **2–2** The Statistical Significance of Material Properties 36
- **2–3** Strength and Cold Work 38
- **2–4** Hardness 41
- **2–5** Impact Properties 42
- **2–6** Temperature Effects 43

Numbering Systems 45
Sand Casting 46
Shell Molding 47
Investment Casting 47
Powder-Metallurgy Process 47
Hot-Working Processes 47
Cold-Working Processes 48
The Heat Treatment of Steel 49
Alloy Steels 52
Corrosion-Resistant Steels 53
Casting Materials 54
Nonferrous Metals 55
Plastics 58
Composite Materials 60
Materials Selection 61
Problems 67

3 Load and Stress Analysis 71

3-1	Equilibrium and Free-Body
	Diagrams 72
3-2	Shear Force and Bending Moments in
	Beams 77
3–3	Singularity Functions 79
3-4	Stress 79
3-5	Cartesian Stress Components 79
3-6	Mohr's Circle for Plane Stress 80
3-7	General Three-Dimensional Stress 86
3-8	Elastic Strain 87
3-9	Uniformly Distributed Stresses 88
3-10	Normal Stresses for Beams in Bending 89
3-11	Shear Stresses for Beams in Bending 94
3-12	Torsion 101
3-13	Stress Concentration 110
3-14	Stresses in Pressurized Cylinders 113
3-15	Stresses in Rotating Rings 115

3-16 Press and Shrink Fits 116
3-17 Temperature Effects 117
3-18 Curved Beams in Bending 118
3-19 Contact Stresses 122
3-20 Summary 126 Problems 127

4 Deflection and Stiffness 147

4-1	Spring Rates 148
4-2	Tension, Compression, and Torsion 149
4-3	Deflection Due to Bending 150
4-4	Beam Deflection Methods 152
4–5	Beam Deflections by Superposition 153
4-6	Beam Deflections by Singularity Functions 156
4-7	Strain Energy 162
4-8	Castigliano's Theorem 164
4-9	Deflection of Curved Members 169
4-10	Statically Indeterminate Problems 175
4-11	Compression Members—General 181
4-12	Long Columns with Central Loading 181
4-13	Intermediate-Length Columns with Central Loading 184
4-14	Columns with Eccentric Loading 184
4-15	Struts or Short Compression Members 188
4-16	Elastic Stability 190
4-17	Shock and Impact 191

4–17 Shock and Impact 191 **Problems** 192

Part 2 Failure Prevention 212

5 Failures Resulting from Static Loading 213

- **5–1** Static Strength 216
- **5–2** Stress Concentration 217
- **5–3** Failure Theories 219
- 5-4 Maximum-Shear-Stress Theory for Ductile Materials 219
- 5–5 Distortion-Energy Theory for Ductile Materials 221

5-6	Coulomb-Mohr Theory for Ductile
	Materials 228
5-7	Failure of Ductile Materials Summary 231
5-8	Maximum-Normal-Stress Theory for Brittle Materials 235
5-9	Modifications of the Mohr Theory for Brittle Materials 235
5-10	Failure of Brittle Materials Summary 238
5-11	Selection of Failure Criteria 238
5-12	Introduction to Fracture Mechanics 239
5-13	Stochastic Analysis 248
5-14	Important Design Equations 254
	Problems 256

6 Fatigue Failure Resulting from Variable Loading 265

6-1	Introduction to Fatigue in Metals 266
6-2	Approach to Fatigue Failure in Analysis and Design 272
6-3	Fatigue-Life Methods 273
6-4	The Stress-Life Method 273
6-5	The Strain-Life Method 276
6-6	The Linear-Elastic Fracture Mechanics Method 278
6-7	The Endurance Limit 282
6-8	Fatigue Strength 283
6-9	Endurance Limit Modifying Factors 286
6-10	Stress Concentration and Notch Sensitivity 295
6-11	Characterizing Fluctuating Stresses 300
6-12	Fatigue Failure Criteria for Fluctuating Stress 303
6-13	Torsional Fatigue Strength under Fluctuating Stresses 317
6-14	Combinations of Loading Modes 317
6-15	Varying, Fluctuating Stresses; Cumulative Fatigue Damage 321
6-16	Surface Fatigue Strength 327
6-17	Stochastic Analysis 330
6-18	Road Maps and Important Design Equations for the Stress-Life Method 344
	Problems 348

Part 3 **Design of Mechanical** Elements 358

Shafts and Shaft 7 **Components** 359

- 7-1 Introduction 360
- 7-2 Shaft Materials 360
- 7-3 Shaft Layout 361
- 7-4 Shaft Design for Stress 366
- 7-5 Deflection Considerations 379
- 7-6 Critical Speeds for Shafts 383
- 7-7 Miscellaneous Shaft Components 388
- 7-8 Limits and Fits 395
 - Problems 400

8 Screws, Fasteners, and the **Design of Nonpermanent** Joints 409

- 8-1 Thread Standards and Definitions 410
- 8-2 The Mechanics of Power Screws 414
- 8-3 Threaded Fasteners 422
- 8-4 Joints—Fastener Stiffness 424
- 8-5 Joints-Member Stiffness 427
- 8-6 Bolt Strength 432
- 8-7 Tension Joints—The External Load 435
- 8-8 Relating Bolt Torque to Bolt Tension 437
- 8-9 Statically Loaded Tension Joint with Preload 440
- 8-10 Gasketed Joints 444
- 8-11 Fatigue Loading of Tension Joints 444
- 8-12 Bolted and Riveted Joints Loaded in Shear 451 Problems 459

Welding, Bonding, 9 and the Design of Permanent Joints 475

- 9-1 Welding Symbols 476
- 9-2 Butt and Fillet Welds 478
- 9-3 Stresses in Welded Joints in Torsion 482
- 9-4 Stresses in Welded Joints in Bending 487

- 9-5 The Strength of Welded Joints 489 9-6 Static Loading 492 9-7 Fatigue Loading 496
- 9-8 Resistance Welding 498
- 9-9 Adhesive Bonding 498 Problems 507

10 **Mechanical Springs** 517

10-1	Stresses in Helical Springs 518
10-2	The Curvature Effect 519
10-3	Deflection of Helical Springs 520
10–4	Compression Springs 520
10-5	Stability 522
10-6	Spring Materials 523
10-7	Helical Compression Spring Design for Static Service 528
10-8	Critical Frequency of Helical Springs 534
10-9	Fatigue Loading of Helical Compression Springs 536
10-10	Helical Compression Spring Design for Fatigue Loading 539
10-11	Extension Springs 542
10-12	Helical Coil Torsion Springs 550
10-13	Belleville Springs 557
10-14	Miscellaneous Springs 558
10-15	Summary 560
	Problems 560

Rolling-Contact 11 Bearings 569

11-1	Bearing Types 570
11-2	Bearing Life 573
11-3	Bearing Load Life at Rated Reliability 574
11-4	Bearing Survival: Reliability versus Life 576
	Life 570
11-5	Relating Load, Life, and Reliability 577
11-6	Combined Radial and Thrust Loading 579
11-7	Variable Loading 584
11-8	Selection of Ball and Cylindrical Roller
	Bearings 588
11-9	Selection of Tapered Roller Bearings 590
11-10	Design Assessment for Selected
	Rolling-Contact Bearings 599

- **11–11** Lubrication 603
- **11–12** Mounting and Enclosure 604 **Problems** 608

12 Lubrication and Journal Bearings 617

12-1	Types of Lubrication 618
12-2	Viscosity 619
12-3	Petroff's Equation 621
12-4	Stable Lubrication 623
12-5	Thick-Film Lubrication 624
12-6	Hydrodynamic Theory 625
12-7	Design Considerations 629
12-8	The Relations of the Variables 631
1 2-9	Steady-State Conditions in Self-Contained
	Bearings 645
12-10	Clearance 648
12-11	Pressure-Fed Bearings 650
12-12	Loads and Materials 656
12-13	Bearing Types 658
12-14	Thrust Bearings 659
12-15	Boundary-Lubricated Bearings 660
	Problems 669

13 Gears—General 673

13-1 Types of Gear 674 13-2 Nomenclature 675 13-3 Conjugate Action 677 13 - 4Involute Properties 678 13-5 Fundamentals 678 13-6 Contact Ratio 684 13-7 Interference 685 13-8 The Forming of Gear Teeth 687 13-9 Straight Bevel Gears 690 13-10 Parallel Helical Gears 691 13-11 Worm Gears 695 13 - 12Tooth Systems 696 13-13 Gear Trains 698 13 - 14Force Analysis—Spur Gearing 705 13-15 Force Analysis—Bevel Gearing 709 13-16 Force Analysis-Helical

Gearing 712

13–17 Force Analysis—Worm Gearing 714 **Problems** 720

14 Spur and Helical Gears 733

14-1	The Lewis Bending Equation 734
14-2	Surface Durability 743
14-3	AGMA Stress Equations 745
14-4	AGMA Strength Equations 747
14–5	Geometry Factors I and J (Z_I and Y_J) 751
14-6	The Elastic Coefficient $C_p(Z_E)$ 756
14-7	Dynamic Factor K_v 756
14-8	Overload Factor K _o 758
14-9	Surface Condition Factor $C_f(Z_R)$ 758
14-10	Size Factor K_s 759
14-11	Load-Distribution Factor $K_m(K_H)$ 759
14-12	Hardness-Ratio Factor C_H 761
14-13	Stress Cycle Life Factors Y_N and Z_N 762
14-14	Reliability Factor $K_R(Y_Z)$ 763
14-15	Temperature Factor $K_T(Y_{\theta})$ 764
14-16	Rim-Thickness Factor K_B 764
14-17	Safety Factors S_F and S_H 765
14-18	Analysis 765
14-19	Design of a Gear Mesh 775
	Problems 780

15 Bevel and Worm Gears 785

16	Clutches, Brakes, Couplings
	Problems 821
15-9	Buckingham Wear Load 820
15-8	Designing a Worm-Gear Mesh 817
15-7	Worm-Gear Analysis 813
15-6	Worm Gearing—AGMA Equation 809
15-5	Design of a Straight-Bevel Gear Mesh 806
15-4	Straight-Bevel Gear Analysis 803
15-3	AGMA Equation Factors 791
15-2	Bevel-Gear Stresses and Strengths 788
15-1	Bevel Gearing—General 786

16 Clutches, Brakes, Couplings, and Flywheels 825

- **16–1** Static Analysis of Clutches and Brakes 827
- **16–2** Internal Expanding Rim Clutches and Brakes 832

xiv Mechanical Engineering Design

16-3	External Contracting Rim Clutches and
	Brakes 840
16-4	Band-Type Clutches and Brakes 844
1 6-5	Frictional-Contact Axial Clutches 845
1 6-6	Disk Brakes 849
1 6-7	Cone Clutches and Brakes 853
16-8	Energy Considerations 856
1 6-9	Temperature Rise 857
16-10	Friction Materials 861
16-11	Miscellaneous Clutches and Couplings 864
16-12	Flywheels 866
	Problems 871

17 Flexible Mechanical Elements 879

- 17-1 Belts 880
- **17–2** Flat- and Round-Belt Drives 883
- 17-3 V Belts 898
- 17-4 Timing Belts 906
- 17–5 Roller Chain 907
- 17-6 Wire Rope 916
- **17–7** Flexible Shafts 924 **Problems** 925

18 Power Transmission Case Study 933

- **18–1** Design Sequence for Power Transmission 935
- **18–2** Power and Torque Requirements 936
- **18–3** Gear Specification 936
- **18–4** Shaft Layout 943
- **18–5** Force Analysis 945
- **18–6** Shaft Material Selection 945
- **18–7** Shaft Design for Stress 946
- **18–8** Shaft Design for Deflection 946
- **18–9** Bearing Selection 947
- **18–11** Key and Retaining Ring Selection 948
- 18–12 Final Analysis 951Problems 951

Part 4 Analysis Tools 952

19 Finite-Element Analysis 953

19-1	The Finite-Element Method 955
19-2	Element Geometries 957
19-3	The Finite-Element Solution Process 959
19-4	Mesh Generation 962
19-5	Load Application 964
19-6	Boundary Conditions 965
19-7	Modeling Techniques 966
19-8	Thermal Stresses 969
19-9	Critical Buckling Load 969
19-10	Vibration Analysis 971
19-11	Summary 972
	Problems 974

20 Statistical Considerations 977

Random Variables 978
Arithmetic Mean, Variance,
and Standard Deviation 980
Probability Distributions 985
Propagation of Error 992
Linear Regression 994
Problems 997

Appendixes

- A Useful Tables 1003
- B Answers to Selected Problems 1059

Index 1065