- Preface
- 1 Introduction
- 1.1 Development of Chemometrics
- 1.2 Application Areas
- 1.3 How to Use this Book
- 1.4 Literature and Other Sources of Information
- References
- 2 Experimental Design
- 2.1 Why Design Experiments in Chemistry?
- 2.2 Degrees of Freedom and Sources of Error
- 2.3 Analysis of Variance and Interpretation of Errors
- 2.4 Matrices, Vectors and the Pseudoinverse
- 2.5 Design Matrices
- 2.6 Factorial Designs
- 2.7 An Example of a Factorial Design
- 2.8 Fractional Factorial Designs
- 2.9 Plackett-Burman and Taguchi Designs
- 2.10 The Application of a Plackett-Burman Design to the Screening of Factors Influencing a Chemical Reaction
- 2.11 Central Composite Designs
- 2.12 Mixture Designs
- 2.13 A Four Component Mixture Design Used to Study Blending of Olive Oils
- 2.14 Simplex Optimization
- 2.15 Leverage and Confidence in Models
- 2.16 Designs for Multivariate Calibration
- References
- 3 Statistical Concepts
- 3.1 Statistics for Chemists
- 3.2 Errors
- 3.3 Describing Data
- 3.4 The Normal Distribution
- 3.5 Is a Distribution Normal?
- 3.6 Hypothesis Tests
- 3.7 Comparison of Means: the t-Test
- 3.8 F-Test for Comparison of Variances
- 3.9 Confidence in Linear Regression
- 3.10 More about Confidence
- 3.11 Consequences of Outliers and How to Deal with Them
- 3.12 Detection of Outliers
- 3.13 Shewhart Charts
- 3.14 More about Control Charts
- References
- 4 Sequential Methods
- 4.1 Sequential Data
- 4.2 Correlograms
- 4.3 Linear Smoothing Functions and Filters
- 4.4 Fourier Transforms
- 4.5 Maximum Entropy and Bayesian Methods

- 4.6 Fourier Filters
- 4.7 Peakshapes in Chromatography and Spectroscopy
- 4.8 Derivatives in Spectroscopy and Chromatography
- 4.9 Wavelets
- References
- 5 Pattern Recognition
- 5.1 Introduction
- 5.2 Principal Components Analysis
- 5.3 Graphical Representation of Scores and Loadings
- 5.4 Comparing Multivariate Patterns
- 5.5 Preprocessing
- 5.6 Unsupervised Pattern Recognition: Cluster Analysis
- 5.7 Supervised Pattern Recognition
- 5.8 Statistical Classification Techniques
- 5.9 K Nearest Neighbour Method
- 5.10 How Many Components Characterize a Dataset?
- 5.11 Multiway Pattern Recognition
- References
- 6 Calibration
- 6.1 Introduction
- 6.2 Univariate Calibration
- 6.3 Multivariate Calibration and the Spectroscopy of Mixtures
- 6.4 Multiple Linear Regression
- 6.5 Principal Components Regression
- 6.6 Partial Least Squares
- 6.7 How Good is the Calibration and What is the Most Appropriate Model?
- 6.8 Multiway Calibration
- References
- 7 Coupled Chromatography
- 7.1 Introduction
- 7.2 Preparing the Data
- 7.3 Chemical Composition of Sequential Data
- 7.4 Univariate Purity Curves
- 7.5 Similarity Based Methods
- 7.6 Evolving and Window Factor Analysis
- 7.7 Derivative Based Methods
- 7.8 Deconvolution of Evolutionary Signals
- 7.9 Noniterative Methods for Resolution
- 7.10 Iterative Methods for Resolution
- 8 Equilibria, Reactions and Process Analytics
- 8.1 The Study of Equilibria using Spectroscopy
- 8.2 Spectroscopic Monitoring of Reactions
- 8.3 Kinetics and Multivariate Models for the Quantitative Study of Reactions
- 8.4 Developments in the Analysis of Reactions using On-line Spectroscopy
- 8.5 The Process Analytical Technology Initiative
- References