## **Table of Contents**

- 1 Introduction and Some Useful Review
- A Message for the Student
- Differential Equations
- Classification of Partial Differential Equations and Boundary Conditions
- Numerical Solutions for Partial Differential Equations
- Vectors, Tensors, and the Equation of Motion
- The Men for Whom the Navier-Stokes Equations are Named
- Sir Isaac Newton
- References
- 2 Inviscid Flow Simplified Fluid Motion
- Introduction
- Two-Dimensional Potential Flow
- Numerical Solution of Potential Flow Problems
- Circulation and the Kutta-Joukowski theorem
- Conclusion
- References
- 3 Laminar Flows in Ducts and Enclosures
- Introduction
- Hagen-Poiseuille Flow
- Transient Hagen-Poiseuille Flow
- Poiseuille Flow in an Annulus
- Ducts with Other Cross-Sections
- Combined Couette and Poiseuille Flows
- Couette Flows in Enclosures
- Generalized Two-Dimensional Fluid Motion in Ducts
- Some Concerns in Computational Fluid Mechanics
- Flow in the Entrance of Ducts
- Creeping Fluid Motions in Ducts and Cavities
- Microfluidics Flow in Very Small Channels
- Flows in Open Channels
- Pulsatile Flows in Cylindrical Ducts
- Conclusion
- References
- 4 External Laminar Flows and Boundary-Layer Theory
- Introduction
- The Flat Plate
- Flow Separation Phenomena about Bluff Bodies
- Boundary Layer on a Wedge the Falkner-Skan Problem
- The Free Jet
- Integral Momentum Equations
- Hiemenz Stagnation Flow
- Flow in the Wake of a Flat Plate at Zero Incidence
- Conclusion
- References

- 5 Instability, Transition, and Turbulence
- Introduction
- Linearized Hydrodynamic Stability Theory
- Inviscid Stability, the Rayleigh Equation
- Stability of Flow between Concentric Cylinders
- Transition
- Transitiom in Hagen-Poiseuille flow
- Transition for the Blasius case
- Turbulence and Elementary Closure Schemes
- Higher order closure schemes
- Variations
- Introduction to the Statistical Theory of Turbulence
- Conclusion
- References
- 6 Heat Transfer by Conduction
- Introduction
- Steady-State Conduction Problems in Rectangular Coordinates
- Transient Conduction Problems in Rectangular Coordinates
- Steady-State Conduction Problems in Cylindrical Coordinates
- Transient Conduction Problems in Cylindrical Coordinates
- Steady-State Conduction Problems in Spherical Coordinates
- Transient Conduction Problems in Spherical Coordinates
- Kelvin's Estimate of the Age of the Earth
- Some Specialized Topics in Conduction
- Conduction in extended surface heat transfer
- Anisotropic materials
- Composite spheres
- Conclusion
- References
- 7 Heat Transfer with Laminar Fluid Motion
- Introduction
- Problems in Rectangular Coordinates
- Couette flow with thermal energy production
- Viscous heating with temperature-dependent viscosity
- The thermal entrance region in rectangular coordinates
- Heat transfer to fluid moving past a flat plate
- Problems in Cylindrical Coordinates
- Thermal entrance length in a tube the Graetz problem
- Natural Convection Buoyancy-Induced Fluid Motion
- Vertical heated plate the Pohlhausen problem
- The heated, horizontal cylinder
- Natural convection in enclosures
- Two-dimensional Rayleigh-Benard problem
- Conclusion
- References
- 8 Diffusional Mass Transfer

- Introduction
- Unsteady Evaporation of Volatile Liquids the Arnold Problem
- Diffusion in Rectangular Geometries
- Diffusion into quiescent liquids absorption
- Absorption with chemical reaction
- Concentration-dependent diffusivity
- Diffusion through a membrane
- Diffusion through a membrane with variable D
- Diffusion in Cylindrical Systems
- The isothermal, cylindrical catalyst pellet
- Diffusion in squat (small L/d) cylinders
- Diffusion through membrane with edge effects
- Diffusion in Spherical Systems
- The spherical catalyst pellet with exothermic reaction
- Sorption into a sphere from a solution of limited volume
- Some Specialized Topics in Diffusion
- Diffusion with moving boundaries
- Diffusion with impermeable obstructions
- Diffusion in biological systems
- Conclusion
- References
- 9 Mass Transfer in Well-Characterized Flows
- Introduction
- Convective Mass Transfer in Rectangular Coordinates
- Thin film on a vertical wall
- Convective transport with reaction at wal
- Mass transfer between a flowing fluid and a flat plate
- Mass Transfer with Laminar Flow in Cylindrical Systems
- Fully developed flow in a tube
- Variations for mass transfer in a cylindrical tube
- Mass transfer in an annulus with laminar flow
- Homogeneous reaction in fully-developed laminar flow
- Mass Transfer between a Sphere and a Moving Fluid
- Some Specialized Topics in Convective Mass Transfer
- Using oscillatory flows in enhance interphase transport
- Chemical vapor deposition in horizontal reactors
- Dispersion effects in chemical reactors
- Transient operation of a tubular reactor
- Conclusion
- References
- 10 Heat and Mass Transfer in Turbulence
- Introduction
- Solution through Analogy
- Elementary Closure Processes
- Scalar Transport with Two-Equation Models of Turbulence
- Turbulent Flows with Chemical Reactions

- Simple closure schemes
- An Introduction to pdf Modeling
- The Fokker-Planck equation and pdf modeling of reactive flows
- Transported pdf modeling
- The Lagrangian View of Turbulent Transport
- Conclusion
- References
- 11 Topics in Multiphase and Multicomponent Systems
- Gas-Liquid Systems
- Gas bubbles in liquids
- Bubble formation at orifices
- Bubble oscillations and mass transfer
- Liquid-Liquid Systems
- Droplet breakage
- Particle-Fluid Systems
- Introduction to coagulation
- Collision mechanisms
- Self-preserving size distributions
- Dynamic behavior of the particle size distribution
- Other aspects of PSD modeling
- A highly simplified example
- Multicomponent Diffusion in Gases
- The Stefan-Maxwell equations
- Conclusion
- References
- Problems to Accompany A Second Course in Transport Phenomena
- Appendix A Finite Difference Approximations for Derivatives
- Appendix B Bessel's Equation and Bessel Functions
- Appendix C Solving Laplace and Poisson (Elliptic) Partial Differential Equations
- Appendix D Solving Elementary Parabolic Partial Differential Equations
- Appendix E Error Function
- Appendix F Gamma Function
- Appendix G Regular Perturbation
- Appendix H Solution of Differential Equations by Collocation