
Table of contents
• Preface
• The Issue of Scale
• This Edition Compared with the First
• How Instructors Can Use This Book
• Acknowledgments
• Part I Introduction To Software Engineering
• Chapter 1 The Goals and Terminology of Software Engineering
• What is Software Engineering
• Why Software Engineering Is Critical: Software Disasters
• Why Software Fails and Succeeds
• Software Engineering Activities
• Software Engineering Principles
• Ethics in Software Engineering
• Case Studies
• Summary
• Exercises
• Bibliography
• Chapter 2 Introduction to Quality and Metrics in Software Engineering
• 2.1 The Meaning of Software Quality
• 2.2 Defects in Software
• 2.3 Verification and Validation
• 2.4 Planning for Quality
• 2.5 Metrics
• 2.6 Summary
• 2.7 Exercises
• Bibliography
• Part II Software Process
• Chapter 3 Software Process
• 3.1 The Activities of Software Process
• 3.2 Software Process Models
• 3.3 Case Study: Student Team Guidance
• 3.4 Summary
• 3.5 Exercises
• Bibliography
• Chapter 4 Agile Software Processes
• 4.1 Agile History and Agile Manifesto
• 4.2 Agile Principles
• 4.3 Agile Methods
• 4.4 Agile Processes
• 4.5 Integrating Agile with Non-Agile Processes
• 4.6 Summary
• 4.7 Exercises
• Bibliography
• Chapter 5 Quality in the Software Process

• 5.1 Principles of Managing Quality
• 5.2 Managing Quality in Agile Processes
• 5.3 Quality Planning
• 5.4 Inspections
• 5.5 QA Reviews and Audits
• 5.6 Defect Management
• 5.7 Process Improvement and Process Metrics
• 5.8 Organization-Level Quality and the CMMI
• 5.9 Case Study
• 5.10 Summary
• 5.11 Exercises
• Bibliography
• Chapter 6 Software Configuration Management
• 6.1 Software Configuration Management Goals
• 6.2 SCM Activities
• 6.3 Configuration Management Plans
• 6.4 Configuration Management Systems
• 6.5 Case Study: Encounter Video Game
• 6.6 Case Study: Eclipse
• 6.7 Student Team Guidance: Configuration Management
• 6.8 Summary
• 6.9 Exercises
• Bibliography
• Part III Project Management
• Chapter 7 Principles of Software Project Management I: Organization,

Tools, and Risk Management
• 7.1 Software Project Organization
• 7.2 Team Size
• 7.3 Geographically Distributed Development
• 7.4 The Team Software Process
• 7.5 Software Project Tools and Techniques
• 7.6 Risk Management
• 7.7 Student Team Guidance: Organizing the Software Projec's Management
• 7.8 Summary
• 7.9 Exercises
• Bibliography
• Chapter 8 Principles of Software Project Management II: Estimation,

Scheduling, and Planning
• 8.1 Cost Estimation
• 8.2 Scheduling
• 8.3 The Software Project Management Plan
• 8.4 Case Study: Encounter Project Management Plan
• 8.5 Case Study: Project Management in Eclipse
• 8.6 Case Study: Project Management for OpenOffice
• 8.7 Case Study: Student Team Guidance
• 8.8 Summary

• 8.9 Exercises
• Bibliography
• Chapter 9 Quality and Metrics in Project Management
• 9.1 Cultivating and Planning Internal Quality
• 9.2 Project Metrics
• 9.3 Using Metrics for Improvement
• 9.4 Software Verification and Validation Plan
• 9.5 Case Study: Software Verification and Validation Plan for Encounter
• 9.6 Summary
• 9.7 Exercises
• Bibliography
• Part IV Requirements Analysis
• Chapter 10 Principles of Requirements Analysis
• 10.1 The Value of Requirements Analysis
• 10.2 Sources of Requirements
• 10.3 High-level vs. Detailed
• Requirements
• 10.4 Types of Requirements
• 10.5 Nonfunctional Requirements
• 10.6 Documenting Requirements
• 10.7 Traceability
• 10.8 Agile Methods and Requirements
• 10.9 Updating the Project to Reflect Requirements Analysis
• 10.10 Summary
• 10.11 Exercises
• Bibliography
• Chapter 11 Analyzing High-Level Requirements
• 11.1 Examples of Customer Wants
• 11.2 Stakeholder Vision
• 11.3 The Interview and Documentation Process
• 11.4 Writing an Overview
• 11.5 Describing Main Functions and Used Cases
• 11.6 Agile Methods for High-Level Requirements
• 11.7 Specifying User Interfaces: High Level
• 11.8 Security Requirements
• 11.9 Using Diagrams for High-Level Requirements
• 11.10 Case Study: High-Level Software Requirements Specifications (SRS)

for the Encounter Video Game
• 11.11 Case Study: High-Level Requirements for Eclipse
• 11.12 Case Study: High-Level Requirements for OpenOffice
• 11.13 Summary
• 11.14 Exercises
• Bibliography
• Chapter 12 Analyzing Detailed Requirements
• 12.1 The Meaning of Detailed Requirements
• 12.2 Organizing Detailed Requirements

• 12.3 User Interfaces: Detailed Requirements
• 12.4 Detailed Security Requirements
• 12.5 Error Conditions
• 12.6 Traceability of Detailed Requirements
• 12.7 Using Detailed Requirements to Manage Projects
• 12.8 Prioritizing Requirements
• 12.9 Associating Requirements with Tests
• 12.10 Agile Methods for Detailed Requirements
• 12.11 Using Tools and the Web for Requirements Analysis
• 12.12 The Effects on Projects of the Detailed Requirements Process
• 12.13 Student Project Guide: Requirements for the Encounter Case Study
• 12.14 Case Study: Detailed Requirements for the Encounter Video Game
• 12.15 Summary
• 12.16 Exercises
• Bibliography
• Chapter 13 Quality and Metrics in Requirements Analysis
• 13.1 Quality of Requirements for Agile Projects
• 13.2 Accessibility of Requirements
• 13.3 Comprehensiveness of Requirements
• 13.4 Understandability of Requirements
• 13.5 Un-ambiguity of Requirements
• 13.6 Consistency of Requirements
• 13.7 Prioritization of Requirements
• 13.8 Security and High-Level Requirements
• 13.9 Self-Completeness of Requirements
• 13.10 Testability of Requirements
• 13.11 Traceability of Requirements
• 13.12 Metrics for Requirements Analysis
• 13.13 Inspecting Detailed Requirements
• 13.14 Summary
• 13.15 Exercises
• Chapter 14 Online Chapter - Formal and Emerging Methods in

Requirements Analysis as follows: An Introduction
• 14.1 Provable Requirements Method
• 14.2 Introduction to Formal Methods
• 14.3 Mathematical Preliminaries
• 14.4 The Z-Specification Language
• 14.5 The B Language System
• 14.6 Trade-offs for Using a B-like system
• 14.7 Summary
• 14.8 Exercises
• Bibliography
• Part V Software Design
• Chapter 15 Principles of Software Design
• 15.1 The Goals of Software Design
• 15.2 Integrating Design Models

• 15.3 Frameworks
• 15.4 IEEE Standards for Expressing Designs
• 15.6 Summary
• 15.7 Exercises
• Chapter 16 The Unified Modeling Language
• 16.1 Classes in UML
• 16.2 Class Relationships in UML
• 16.3 Multiplicity
• 16.4 Inheritance
• 16.5 Sequence Diagrams
• 16.6 State Diagrams
• 16.7 Activity Diagrams
• 16.8 Data Flow Models
• 16.9 A Design Example with UML
• 16.10 Summary
• 16.11 Exercises
• Bibliography
• Chapter 17 Software Design Patterns
• 17.1 Examples of a Recurring Design Purpose
• 17.2 An Introduction to Design Patterns
• 17.3 Summary of Design Patterns by Type: Creational, Structural, and

Behavioral
• 17.4 Characteristics of Design Patterns: Viewpoints, Roles, and Levels
• 17.5 Selected Creational Design Patterns
• 17.6 Selected Structural Design Patterns
• 17.7 Selected Behavioral Design Patterns
• 17.8 Design Pattern Forms: Delegation and Recursion
• 17.9 Summary
• 17.10 Exercises
• Bibliography
• Chapter 18 Software Architecture
• 18.1 A Categorization of Architectures
• 18.2 Software Architecture Alternatives and Their Class Models
• 18.3 Trading Off Architecture Alternatives
• 18.4 Tools for Architectures
• 18.5 IEEE Standards for Expressing Designs
• 18.6 Effects of Architecture Selection on the Project Plan
• 18.7 Case Study: Preparing to Design Encounter (Student Project Guide

continued)
• 18.8 Case Study: Software Design Document for the Role-Playing Video

Game Framework
• 18.9 Case Study: Software Design Document for Encounter (Uses the

Framework)
• 18.10 Case Study: Architecture of Eclipse
• 18.11 Case Study: OpenOffice Architecture
• 18.12 Summary

• 18.13 Exercises
• Bibliography
• Chapter 19 Detailed Design
• 19.1 Relating Use Cases, Architecture, and Detailed Design
• 19.2 A Typical Road Map for the Detailed Design Process
• 19.3 Object-Oriented Design Principles
• 19.4 Designing against Interfaces
• 19.5 Specifying Classes, Functions, and Algorithms
• 19.6 Reusing Components
• 19.7 Sequence and Data Flow Diagrams for Detailed Design
• 19.8 Detailed Design and Agile Processes
• 19.9 Design in the Unified Development Process
• 19.10 IEEE Standard 890 for Detailed Design
• 19.11 Updating a Project with Detailed Design
• 19.12 Case Study: Detailed Design of Encounter
• 19.13 Case Study: Detailed Design of Eclipse
• 19.14 Summary
• 19.15 Exercises
• Bibliography
• Chapter 20 Design Quality and Metrics
• 20.1 Degree of Understandability, Cohesion, and Coupling
• 20.2 Degree of Sufficiency as a Quality Goal
• 20.3 Degree of Robustness as a Quality Goal
• 20.4 Degree of Flexibility as a Design Quality Goal
• 20.5 Degree of Reusability as a Design Quality Goal
• 20.6 Degree of Time Efficiency as a Design Quality Measure
• 20.7 Degree of Space Efficiency as a Design Quality Measure
• 20.8 Degree of Reliability as a Design Quality Measure
• 20.9 Degree of Security as a Design Quality Measure
• 20.10 Assessing Quality in Architecture Selection
• 20.11 Assessing the Quality of Detailed Designs
• 20.12 Summary
• 20.13 Exercises
• Bibliography
• Chapter 21 Online Chapter - Advanced and Emerging Methods in Software

Design
• 21.1 Designing in a Distributed Environment
• 21.2 Introduction to Aspect-Oriented Programming
• 21.3 Designing for Security with UMLsec
• 21.4 Model-Driven Architectures
• 21.5 The Formal Design Process in B
• 21.6 Summary
• 21.7 Exercises
• Bibliography
• Part VI Implementation
• Chapter 22 Principles of Implementation

• 22.1 Agile and Non-Agile Approaches to Implementation
• 22.2 Choosing a Programming Language
• 22.3 Identifying Classes
• 22.4 Defining Methods
• 22.5 Implementation Practices
• 22.6 Defensive Programming
• 22.7 Coding Standards
• 22.8 Comments
• 22.9 Tools and Environments for Programming
• 22.10 Case Study: Encounter Implementation
• 22.11 Case Study: Eclipse
• 22.12 Case Study: OpenOffice
• 22.13 Student Team Guidance for Implementation
• 22.14 Summary
• 22.15 Code Listings Referred to in This Chapter
• 22.16 Exercises
• Bibliography
• Chapter 23 Quality and Metrics in Implementation
• 23.1 Quality of Implementation
• 23.2 Code Inspections
• 23.3 Summary
• 23.4 Exercises
• Chapter 24 Refactoring
• 24.1 Big Refactorings
• 24.2 Composing Methods
• 24.3 Moving Features between Objects
• 24.4 Organizing Data
• 24.5 Generalization
• 24.6 Introducing Modules
• 24.7 Refactoring in Projects
• 24.8 Summary
• 24.9 Exercises
• Bibliography
• Part VII Testing And Maintenance
• Chapter 25 Introduction to Software Testing
• 25.1 Testing Early and Often and the Agile Connection
• 25.2 Retesting: Regression Testing
• 25.3 Black Box and White Box Testing
• 25.4 Unit Testing vs. Post-Unit Testing
• 25.5 Testing Object-Oriented Implementations
• 25.6 Documenting Tests
• 25.7 Test Planning
• 25.8 Testing Test Suites by Fault Injection
• 25.9 Summary
• 25.10 Exercises
• Chapter 26 Unit Testing

• 26.1 The Sources of Units for Unit Testing
• 26.2 Unit Test Methods
• 26.3 Testing Methods
• 26.4 Test-Driven Development
• 26.5 Case Study: Encounter Video Game
• 26.6 Summary
• 26.7 Exercises
• Bibliography
• Chapter 27 Module and Integration Testing
• 27.1 Stubs and Drivers
• 27.2 Testing a Class
• 27.3 Integration
• 27.4 Daily Builds
• 27.5 Interface Testing
• 27.6 Module Integration
• 27.7 Case Study: Class Test for Encounter
• 27.8 Case Study: Encounter Integration Plan
• 27.9 Summary
• 27.10 Exercises
• Bibliography
• Chapter 28 Testing at the System Level
• 28.1 Functional Testing
• 28.2 Nonfunctional Testing
• 28.3 Testing with Lightweight Requirements
• 28.4 Testing Shortly Before Release
• 28.5 Case Study: Encounter Software Test Documentation
• 28.6 Case Study: Eclipse
• 28.7 Case Study: OpenOffice
• 28.8 Summary
• 28.9 Exercises
• Bibliography
• Chapter 29 Software Maintenance
• 29.1 Types of Software Maintenance
• 29.2 Issues of Software Maintenance
• 29.3 Maintenance Process
• 29.4 IEEE Maintenance Standards
• 29.5 Software Evolution
• 29.6 Maintenance Metrics
• 29.7 Case Studies
• 29.8 Summary
• 29.9 Exercises
• Bibliography
• Glossary
• Index

