Table of contents

Preface

The Issue of Scale

This Edition Compared with the First

How Instructors Can Use This Book
Acknowledgments

Part | Introduction To Software Engineering
Chapter 1 The Goals and Terminology of Software Engineering
What is Software Engineering

Why Software Engineering Is Critical: Software Disasters
Why Software Fails and Succeeds
Software Engineering Activities

Software Engineering Principles

Ethics in Software Engineering

Case Studies

Summary

Exercises

Bibliography

Chapter 2 Introduction to Quality and Metrics in Software Engineering
2.1 The Meaning of Software Quality

2.2 Defects in Software

2.3 Verification and Validation

2.4 Planning for Quality

2.5 Metrics

2.6 Summary

2.7 Exercises

Bibliography

Part Il Software Process

Chapter 3 Software Process

3.1 The Activities of Software Process

3.2 Software Process Models

3.3 Case Study: Student Team Guidance
3.4 Summary

3.5 Exercises

Bibliography

Chapter 4 Agile Software Processes

4.1 Agile History and Agile Manifesto

4.2 Agile Principles

4.3 Agile Methods

4.4 Agile Processes

4.5 Integrating Agile with Non-Agile Processes
4.6 Summary

4.7 Exercises

Bibliography

Chapter 5 Quality in the Software Process



5.1 Principles of Managing Quality

5.2 Managing Quality in Agile Processes

5.3 Quality Planning

5.4 Inspections

5.5 QA Reviews and Audits

5.6 Defect Management

5.7 Process Improvement and Process Metrics

5.8 Organization-Level Quality and the CMMI

5.9 Case Study

5.10 Summary

5.11 Exercises

Bibliography

Chapter 6 Software Configuration Management

6.1 Software Configuration Management Goals

6.2 SCM Activities

6.3 Configuration Management Plans

6.4 Configuration Management Systems

6.5 Case Study: Encounter Video Game

6.6 Case Study: Eclipse

6.7 Student Team Guidance: Configuration Management
6.8 Summary

6.9 Exercises

Bibliography

Part 11l Project Management

Chapter 7 Principles of Software Project Management I: Organization,
Tools, and Risk Management

7.1 Software Project Organization

7.2 Team Size

7.3 Geographically Distributed Development

7.4 The Team Software Process

7.5 Software Project Tools and Techniques

7.6 Risk Management

7.7 Student Team Guidance: Organizing the Software Projec's Management
7.8 Summary

7.9 Exercises

Bibliography

Chapter 8 Principles of Software Project Management Il: Estimation,
Scheduling, and Planning

8.1 Cost Estimation

8.2 Scheduling

8.3 The Software Project Management Plan

8.4 Case Study: Encounter Project Management Plan
8.5 Case Study: Project Management in Eclipse

8.6 Case Study: Project Management for OpenOffice
8.7 Case Study: Student Team Guidance

8.8 Summary



8.9 Exercises

Bibliography

Chapter 9 Quality and Metrics in Project Management
9.1 Cultivating and Planning Internal Quality

9.2 Project Metrics

9.3 Using Metrics for Improvement

9.4 Software Verification and Validation Plan

9.5 Case Study: Software Verification and Validation Plan for Encounter
9.6 Summary

9.7 Exercises

Bibliography

Part IV Requirements Analysis

Chapter 10 Principles of Requirements Analysis

10.1 The Value of Requirements Analysis

10.2 Sources of Requirements

10.3 High-level vs. Detailed

Requirements

10.4 Types of Requirements

10.5 Nonfunctional Requirements

10.6 Documenting Requirements

10.7 Traceability

10.8 Agile Methods and Requirements

10.9 Updating the Project to Reflect Requirements Analysis
10.10 Summary

10.11 Exercises

Bibliography

Chapter 11 Analyzing High-Level Requirements

11.1 Examples of Customer Wants

11.2 Stakeholder Vision

11.3 The Interview and Documentation Process

11.4 Writing an Overview

11.5 Describing Main Functions and Used Cases

11.6 Agile Methods for High-Level Requirements

11.7 Specifying User Interfaces: High Level

11.8 Security Requirements

11.9 Using Diagrams for High-Level Requirements
11.10 Case Study: High-Level Software Requirements Specifications (SRS)
for the Encounter Video Game

11.11 Case Study: High-Level Requirements for Eclipse
11.12 Case Study: High-Level Requirements for OpenOffice
11.13 Summary

11.14 Exercises

Bibliography

Chapter 12 Analyzing Detailed Requirements

12.1 The Meaning of Detailed Requirements

12.2 Organizing Detailed Requirements



12.3 User Interfaces: Detailed Requirements

12.4 Detailed Security Requirements

12.5 Error Conditions

12.6 Traceability of Detailed Requirements

12.7 Using Detailed Requirements to Manage Projects
12.8 Prioritizing Requirements

12.9 Associating Requirements with Tests

12.10 Agile Methods for Detailed Requirements

12.11 Using Tools and the Web for Requirements Analysis
12.12 The Effects on Projects of the Detailed Requirements Process
12.13 Student Project Guide: Requirements for the Encounter Case Study
12.14 Case Study: Detailed Requirements for the Encounter Video Game
12.15 Summary

12.16 Exercises

Bibliography

Chapter 13 Quality and Metrics in Requirements Analysis
13.1 Quality of Requirements for Agile Projects

13.2 Accessibility of Requirements

13.3 Comprehensiveness of Requirements

13.4 Understandability of Requirements

13.5 Un-ambiguity of Requirements

13.6 Consistency of Requirements

13.7 Prioritization of Requirements

13.8 Security and High-Level Requirements

13.9 Self-Completeness of Requirements

13.10 Testability of Requirements

13.11 Traceability of Requirements

13.12 Metrics for Requirements Analysis

13.13 Inspecting Detailed Requirements

13.14 Summary

13.15 Exercises

Chapter 14 Online Chapter - Formal and Emerging Methods in
Requirements Analysis as follows: An Introduction

14.1 Provable Requirements Method

14.2 Introduction to Formal Methods

14.3 Mathematical Preliminaries

14.4 The Z-Specification Language

14.5 The B Language System

14.6 Trade-offs for Using a B-like system

14.7 Summary

14.8 Exercises

Bibliography

Part V Software Design

Chapter 15 Principles of Software Design

15.1 The Goals of Software Design

15.2 Integrating Design Models



15.3 Frameworks

15.4 IEEE Standards for Expressing Designs

15.6 Summary

15.7 Exercises

Chapter 16 The Unified Modeling Language

16.1 Classes in UML

16.2 Class Relationships in UML

16.3 Multiplicity

16.4 Inheritance

16.5 Sequence Diagrams

16.6 State Diagrams

16.7 Activity Diagrams

16.8 Data Flow Models

16.9 A Design Example with UML

16.10 Summary

16.11 Exercises

Bibliography

Chapter 17 Software Design Patterns

17.1 Examples of a Recurring Design Purpose

17.2 An Introduction to Design Patterns

17.3 Summary of Design Patterns by Type: Creational, Structural, and
Behavioral

17.4 Characteristics of Design Patterns: Viewpoints, Roles, and Levels
17.5 Selected Creational Design Patterns

17.6 Selected Structural Design Patterns

17.7 Selected Behavioral Design Patterns

17.8 Design Pattern Forms: Delegation and Recursion

17.9 Summary

17.10 Exercises

Bibliography

Chapter 18 Software Architecture

18.1 A Categorization of Architectures

18.2 Software Architecture Alternatives and Their Class Models

18.3 Trading Off Architecture Alternatives

18.4 Tools for Architectures

18.5 IEEE Standards for Expressing Designs

18.6 Effects of Architecture Selection on the Project Plan

18.7 Case Study: Preparing to Design Encounter (Student Project Guide
continued)

18.8 Case Study: Software Design Document for the Role-Playing Video
Game Framework

18.9 Case Study: Software Design Document for Encounter (Uses the
Framework)

18.10 Case Study: Architecture of Eclipse

18.11 Case Study: OpenOffice Architecture

18.12 Summary



18.13 Exercises

Bibliography

Chapter 19 Detailed Design

19.1 Relating Use Cases, Architecture, and Detailed Design
19.2 A Typical Road Map for the Detailed Design Process
19.3 Object-Oriented Design Principles

19.4 Designing against Interfaces

19.5 Specifying Classes, Functions, and Algorithms

19.6 Reusing Components

19.7 Sequence and Data Flow Diagrams for Detailed Design
19.8 Detailed Design and Agile Processes

19.9 Design in the Unified Development Process

19.10 IEEE Standard 890 for Detailed Design

19.11 Updating a Project with Detailed Design

19.12 Case Study: Detailed Design of Encounter

19.13 Case Study: Detailed Design of Eclipse

19.14 Summary

19.15 Exercises

Bibliography

Chapter 20 Design Quality and Metrics

20.1 Degree of Understandability, Cohesion, and Coupling
20.2 Degree of Sufficiency as a Quality Goal

20.3 Degree of Robustness as a Quality Goal

20.4 Degree of Flexibility as a Design Quality Goal

20.5 Degree of Reusability as a Design Quality Goal

20.6 Degree of Time Efficiency as a Design Quality Measure
20.7 Degree of Space Efficiency as a Design Quality Measure
20.8 Degree of Reliability as a Design Quality Measure

20.9 Degree of Security as a Design Quality Measure

20.10 Assessing Quality in Architecture Selection

20.11 Assessing the Quality of Detailed Designs

20.12 Summary

20.13 Exercises

Bibliography

Chapter 21 Online Chapter - Advanced and Emerging Methods in Software
Design

21.1 Designing in a Distributed Environment

21.2 Introduction to Aspect-Oriented Programming

21.3 Designing for Security with UMLsec

21.4 Model-Driven Architectures

21.5 The Formal Design Process in B

21.6 Summary

21.7 Exercises

Bibliography

Part VI Implementation

Chapter 22 Principles of Implementation



22.1 Agile and Non-Agile Approaches to Implementation
22.2 Choosing a Programming Language

22.3 ldentifying Classes

22.4 Defining Methods

22.5 Implementation Practices

22.6 Defensive Programming

22.7 Coding Standards

22.8 Comments

22.9 Tools and Environments for Programming
22.10 Case Study: Encounter Implementation
22.11 Case Study: Eclipse

22.12 Case Study: OpenOffice

22.13 Student Team Guidance for Implementation
22.14 Summary

22.15 Code Listings Referred to in This Chapter
22.16 Exercises

Bibliography

Chapter 23 Quality and Metrics in Implementation
23.1 Quality of Implementation

23.2 Code Inspections

23.3 Summary

23.4 Exercises

Chapter 24 Refactoring

24.1 Big Refactorings

24.2 Composing Methods

24.3 Moving Features between Objects

24.4 Organizing Data

24.5 Generalization

24.6 Introducing Modules

24.7 Refactoring in Projects

24.8 Summary

24.9 Exercises

Bibliography

Part VII Testing And Maintenance

Chapter 25 Introduction to Software Testing
25.1 Testing Early and Often and the Agile Connection
25.2 Retesting: Regression Testing

25.3 Black Box and White Box Testing

25.4 Unit Testing vs. Post-Unit Testing

25.5 Testing Object-Oriented Implementations
25.6 Documenting Tests

25.7 Test Planning

25.8 Testing Test Suites by Fault Injection

25.9 Summary

25.10 Exercises

Chapter 26 Unit Testing



26.1 The Sources of Units for Unit Testing
26.2 Unit Test Methods

26.3 Testing Methods

26.4 Test-Driven Development

26.5 Case Study: Encounter Video Game
26.6 Summary

26.7 Exercises

Bibliography

Chapter 27 Module and Integration Testing
27.1 Stubs and Drivers

27.2 Testing a Class

27.3 Integration

27.4 Daily Builds

27.5 Interface Testing

27.6 Module Integration

27.7 Case Study: Class Test for Encounter
27.8 Case Study: Encounter Integration Plan
27.9 Summary

27.10 Exercises

Bibliography

Chapter 28 Testing at the System Level
28.1 Functional Testing

28.2 Nonfunctional Testing

28.3 Testing with Lightweight Requirements
28.4 Testing Shortly Before Release

28.5 Case Study: Encounter Software Test Documentation
28.6 Case Study: Eclipse

28.7 Case Study: OpenOffice

28.8 Summary

28.9 Exercises

Bibliography

Chapter 29 Software Maintenance

29.1 Types of Software Maintenance

29.2 Issues of Software Maintenance

29.3 Maintenance Process

29.4 IEEE Maintenance Standards

29.5 Software Evolution

29.6 Maintenance Metrics

29.7 Case Studies

29.8 Summary

29.9 Exercises

Bibliography

Glossary

Index



