Contents T.Pr. Ker Electro-ontic Effect | | Part A—Principles | 85.5 1 | |-----------|---|---------------| | 303 1 | Comu's Spiral rical Rackground of Lasers | #14.E - | | 1. Histor | ical background of Lasers | 30.63 | | 1.1 | Frauchofer a Analysis cost of the Section Granting | 3 | | 1.2 | Radiation and Waves | 3 | | 1.3 | Earlier Experiments with Radio Waves | 4 | | 1.4 | Emergence of Laser Era | 4 | | 1.5 | Pre-laser Optics | 5 | | 1.6 | Lasers Today Boltz slegged | 5 | | 1.7 | Study of Light Rollo M graphy dead 1A revised O | 5 | | 1.8 | Theories on the Nature of Light | 5 | | 1.9 | Corpuscular Theory of Light | 6 | | 1.10 | Wave Theory of Light | 6 | | 1.11 | Albert Einstein—Stimulated Emission | 7 | | 1.12 | Post Second World War Experiments | 7 | | 1.13 | Emergence of Maser | 8 | | | Worker Out Examples | 9 | | | Tutorial Exercise | 12 | | | References and Suggested Reading | 12 | | | Black Bodies Region of American Regions A | | | 2. Revie | w of Some Optical Principles | 14 | | 2.1 | Reflection and Associated Principles | 14 | | 2.2 | Refraction and Associated Principles Refraction and Associated Principles | 21 | | 2.3 | Illumination and Photometry | 27 | | 2.4 | Photometric Units and Quantities | 29 | | 2.5 | Calculation of Solid Angle | 30 | | 2.6 | Actiomaticm | 31 | | 2.7 | Aplanatic Points of a Spherical Surface | 34 | | 2.8 | How to Remove/Minimise Astigmatism | 37 | | 2.9 | Snell's Analysis | 38 | | 2.10 | Brewster's Law and his Analysis | 38 | | 2.11 | Kerr Effect | 41 | | | | | # xii CONTENTS | | 2.12 | Kerr Electro-optic Effect | | 41 | |---|---------|--|--------|-----| | | 2.13 | Kerr Magneto-optic Effect | | 43 | | | 2.14 | Pockels Effect and Pockel Cells | | 43 | | | 2.15 | Zeeman Effect | | 44 | | | 2.16 | Stark Effect | | 45 | | | 2.17 | Stokes' Shift and Photoluminescence | | 47 | | | 2.18 | Fluorescence of Solids and Liquids | | 52 | | | 2.19 | Fresnel's Analysis | | 52 | | | 2.20 | Fresnel Biprism Experiment | | 53 | | | 2.21 | Fresnel Diffraction and Half-period Zones | | 55 | | | 2.22 | Fresnel Dragging Coefficient | | 57 | | | 2.23 | Fresnel Integrals and Cornu's Spiral | | 58 | | | 2.24 | Cornu's Spiral | | 62 | | | 2.25 | Fresnel's Number green I to bauer garest lastr | otsi | 66 | | | 2.26 | Fraunhofer's Analysis | | 66 | | | 2.27 | Diffraction Grating | | 68 | | | 2.28 | Principles of Diffraction Gratings | | 69 | | | 2.29 | Primary Maxima | | 70 | | | 2.30 | Secondary or Subsidiary Maxima and Minima | 6 10 | 71 | | | 2.31 | Absorption Spectra of Atoms and Fraunhofer Lines | | 73 | | | 2.32 | Donnler Effect | | 74 | | | 2.33 | Observer At Past: Source in Motion | | 74 | | | 2.34 | Observer Moving: Source at Rest | | 75 | | | 2.35 | Both Observer And Source in Motion | | 75 | | | 2.36 | Ontical Holography | (#1 | 76 | | | | Worked Out Evennles | 11 | 83 | | | | Tutorial Evergice MISSRITEGICS BUT M DEGOOD 1893 | | 86 | | | | References and Suggested Readings | | 87 | | | | Estilization for Same | | | | 3 | . Basic | Principles of Modern Physics—A Brief Review | | 89 | | | | Black Bodies | | 90 | | | 3.1 | Atomic Structure | m 1240 | 95 | | | 3.3 | Spectral Series of Hydrogen Atom | | 97 | | | 3.4 | Pilled and Onlife v Role of the Resident Anna figures 19.5 | | 102 | | | | 2 COLUMN BARROSSA DOS RELIGIOS | | 104 | | | 3.5 | | | 104 | | | 3.6 | Pauli's Exclusion Principle | 4 | 105 | | | 3.7 | X-rays | 1 3 | 107 | | | | Origin of X-rays and Moseley's Law | à | 108 | | | 3.9 | Significance of Moseley's Law | | 111 | | | 3.11 | Diffraction of Y-rays | | 111 | | | 3.12 | Bragg's Law | 9 | 112 | | | 3.12 | Polarisation, Absorption and Fluorescence of X-rays | | 113 | | | 2.13 | I CIMIADAMONI, I ACCOUPTION | | | | CO | NTENTS | wiii | |----|--------|------| | | NIENIS | XIII | | 3.14 | Polarisation of X-rays | 113 | |--------|--|------------| | 3.15 | Absorption of X-rays | 114 | | 3.16 | Fluorescence of X-rays | 115 | | 3.17 | Scattering of X-rays and Thomson's Law | 2 117 | | 3.18 | Photoelectric Effect | 120 | | 3.19 | Compton Effect | 121 | | 3.20 | Energy Distribution in Electrons | 123 | | 3.21 | Probability of Distribution of Free Electrons | 125 | | 3.22 | Process of Conduction in Metals Under An | | | 0101 | Electromagnetic Field Same Safet 2 a Bi anion T ya A | 125 | | 3.23 | Free Electrons in Metals | 127 | | 3.24 | Energy Levels in Free Electrons | 128 | | 3.25 | Raman Effect | 129 | | 3.26 | Stimulated Raman Scattering | 132 | | 3.27 | The Dual Nature of Matter and Waves | 134 | | 3.28 | Waye/Particle Dualism | 134 | | 3.29 | De-broglie Model of Atom | 135 | | 3.30 | De-broglie's Atomic Structure | 135 | | 3.31 | Heisenberg's Uncertainty Principle | 137 | | 3.32 | Schrodinger Wave Equation | 138 | | 3.33 | Physical Importance of | 144 | | 181 | Worked Out Examples | 146 | | | The intermediate of the sale good and notified and the sale good a | 152 | | pf 1 | References and Suggested Reading | 154 | | 26 | A ST OF THE TENT STREET STAND OF THE CONTRACT OF THE PARTY PART | | | . Elem | ents of Laser Physics | 156 | | 305 | | 156 | | 4.1 | Basic Steps | 156 | | 4.2 | Physical Principles Villidia Boot 1 | 157 | | 4.3 | Spontaneous Emission | 158 | | 4.4 | Stimulated Emission | | | 4.5 | Absorption Swift Supplied to be accounted as | 159
160 | | 4.6 | Significance of Einstein Coefficients | | | 4.7 | Active Material | 162 | | 4.8 | Population Inversion | 163 | | 4.9 | Laser Medium | 163 | | 4.10 | Coefficient of Gain | 163 | | 4.11 | Pumping and Pumping Schemes | 164 | | 4.12 | Hold-alive Discharge Circuit | 165 | | 4.13 | Pseudo Simmer Discharge | 100 | | 4.14 | Resonant Cavity | 166 | | 4.15 | Oscillator Versus Ampliner | 166 | | | Worked Out Examples | 168 | | | Tutorial Exercise | 171 | | | References and Suggested Reading | 171 | ## xiv CONTENTS | 5. Basic | Characteristics of Light Rays | Polarisation | 173 | |-------------------
--|---------------------|-----| | 5.1 | Tracing of A Rav | | 173 | | 5.2 | Matrix of The Day | | 173 | | 5.3 | Some Typical Ray Matrices | | 175 | | 5.4 | Application of Ray-tracing in an Optical Res | onator | 177 | | 5.5 | What Happens in a Generalised Spherical Re | esonator | 179 | | 5.6 | Stable and Unstable Resonators | | 180 | | 5.7 | Stable Reconstor | | 180 | | 5.8 | Unstable Resonator—A Peripheral Look | | 181 | | 5.9 | Pay Tracing in a Stable Cavity | | 186 | | 5.10 | Renetitive Rays | | 189 | | 3.10 | Worked Out Examples | | 189 | | POR (| Tutorial Everoise | | 192 | | | References and Suggested Readings | | 193 | | | References and Suggested Reasonal To sur | The Dual Nat | | | 6 Prope | erties of Lasers | | 195 | | 7.PK\ 1 | Samples of Differential United for more to ison | | 105 | | 6.1 | Different Beams of Light | De progife's. | 195 | | 6.2 | Characteristics of Laser Beams | Heisenberg's | 195 | | 6.3 | Coherence | | 195 | | 6.4 | | | 196 | | 6.5 | | | 198 | | 6.6 | Relation Between Size of the Source and | | 100 | | 5.795 | Coherence of the Field | Кебетепсер не | 199 | | 6.7 | Relation Between Coherence and Monochron | maticity | 201 | | 6.8 | Brightness and Intensity | its of Laser P. | 202 | | 6.9 | Directionality | | 204 | | 6.10 | Monochromaticity | Basic Steps | 207 | | 6.11 | FOCUSABILITY | Physical Property | 208 | | | Worked Unit Examples | Spontancous b | 209 | | | Tutorial Exercise | | 212 | | (E) | References and Suggested Reading | | 213 | | | f Emstem Coefficients | | 0.5 | | 7. Laser | rirangillang | | 214 | | 501 | | | 214 | | $\frac{7.1}{7.2}$ | Bound Electrons | Laser Medium | 215 | | 7.2 | A STATE OF THE PARTY PAR | | 21/ | | 7.3 | A Re-look At Emissions | | 01/ | | 7.4 | Resonating Cavity Levels of Laser Action | | 016 | | 7.5 | The state of s | | 210 | | 7.6 | | | 01/ | | 7.7 | Three Level Laser | | 21/ | | 7.8 | Four Level Laser | Winked Out B | | | 7.9 | Rate Dynamics Analysis of a Four-level Sch | neme de l'attendant | 22 | ### xvi CONTENTS | 8.35 | Spiking to detail at Lathework to go to leve I marring O | 279 | |-----------|--|------| | | Worked Out Examples actually a Out anoughno's eldaligid | 282 | | 8111 | Tutorial Exercise | 291 | | | Deferences and Suggested Reading | 292 | | | | | | 9. Emissi | ive Properties and Energy States of Laser Media | 293 | | 9.1 | Coverage agains X by sengus bas recorded A | 293 | | 9.2 | | 293 | | 9.3 | Valence Bonds Energy Levels In Molecules | 296 | | 9.4 | Franck-condon Principle | 299 | | 9.5 | Classes of Certain Simple Molecules of Good graduatives O | 300 | | 9.6 | Linear Molecules and Their Rotational Energy Levels | 302 | | 9.7 | Symmetric-top Molecules and Rotational Energy Levels | 303 | | 9.8 | Vibrational Levels of Energies | 303 | | 9.8 | - in the investment of inv | 304 | | 9.10 | Electronic Transitions Electronic Transitions | 304 | | | Spin of Electrons | 304 | | 9.11 | Selection Rules for Transitions of sideman and a sound a | 305 | | 9.12 | Energy Levels In Excimer Molecules | 309 | | 9.13 | Energy Levels In Liquid (Organic Dye Lasers) | | | 9.14 | and their Radiation Characteristics gradual about the activity | 311 | | 252 | Behaviour of Dye Molecules During Excitation & Emission | 316 | | 9.15 | Negative Effect of Triplet States of Dye Molecule | 316 | | 9.16 | Dielectric Solids and Their Energy Levels | 317 | | 9.17 | Host Media | 318 | | 9.18 | Characteristics of Dopant Ions | 319 | | 9.19 | Energy Levels In Semiconductor Materials | 321 | | 9.20 | Properties of Semiconductors | 321 | | 9.21 | Energy Levels In Conducting, Insulating and | | | 9.22 | Semiconducting Materials and a sol-shold avisable | 324 | | 269 | Excitation and Decay of Energy Levels | | | 9.23 | RArrangements of Conduction and Valence | | | 9.24 | BANBands In Semiconductors | 327 | | 901 | Distribution of Density-of-states | | | 9.25 | Intrinsic and Extrinsic Semiconductors | | | 9.26 | Worked Out Examples | | | | Tutorial Exercise | | | | | 338 | | | References and Suggested Readings | 08.8 | |) Pri | nciples and Techniques of Laser Excitation | 339 | | | Teres to the later and lat | 339 | | 10.1 | CExcitation or Pumping Infeshold Paralleters | 345 | | 10.2 | CExcitation Methods | 346 | | 10 3 | Direct Pumping | 540 | | | CONTENTS | XVII | |-----------
---|------| | 10.4 | Problems Encountered In Direct Pumping | 347 | | 10.5 | Population Inversion by Indirect Pumping | 349 | | 10.6 | A Transfer From Relow | 349 | | 10.7 | A Transfer A cross | 350 | | 10.8 | ATTansfer From Top | 351 | | 10.9 | MPumping Geometries In Optical Pumping PROProcess | 356 | | 10.10 | Pumping Efficiency | 360 | | 10.11 | Transverse Pumping | 361 | | 10.12 | Longitudinal (End) Pumping | 363 | | 10.13 | Advantages of End Pumping | 364 | | 10.14 | Particle Pumping (Electrical Pumping) | 364 | | 10.15 | Electron Collisional Pumping | 364 | | 10.16 | Heavy Particle Pumping | 366 | | | Worked Out Examples | 367 | | | Tutorial Exercise | 369 | | | References and Suggested Readings | 369 | | | All the same of the cases are same a second | | | 11. Laser | Resonators 1988 Laxely by | 371 | | 11.1 | Basic Resonator | 371 | | 11.2 | | 372 | | 11.2 | Fabri-perot or Plane-parallel Resonator | 373 | | 11.4 | Spherical or Concentric Resonator | 374 | | 11.5 | Confocal Resonator | 374 | | 11.6 | Combination of Plane and Spherical REFL Reflectors Stable and Unstable Resonator | 375 | | | | 375 | | 11.7 | Townes and Schawlow Approximation | | | 11.8 | Li and Fox Analysis | 378 | | 11.9 | Cavity Losses and Parallelism1384 Boyd and Gordon Treatment for Confocal NA Resonator | 385 | | | Carolic Teacher Cold | 388 | | 11.11 | Tem _{oo} Mode | 388 | | 11.12 | Tem ₀₁ Mode | 389 | | 11.13 | Tem ₁₁ Mode Worked Out Examples | 389 | | i.i.P | Tutorial Exercise | 395 | | | References and Suggested Reading | 395 | | | references and Suggested Reading | 393 | | 12. Elem | ents of Fibre Optics and amiliateve believe to expelie when | 397 | | 12.1 | Optical Fibre | 397 | | 12.1 | D: 11 CDI O C | 397 | | 12.3 | Propagation of Light Within a Fibre | 397 | | 12.4 | I de De Cl. C. Eile | 401 | | 12.5 | Integrated Optics | 403 | | 12.5 | Advantages of Fibre-optics Over Conventional Systems | 405 | | 12.7 | Input Light Acceptance | 406 | | 14.1 | input Light Acceptance | 100 | ### xviii CONTENTS | 12.8 | Modal Dispersion | | 407 | |-----------|--|-------|-------| | 12.9 | Material Dispersion | | 407 | | 12.10 | Multi-mode Fibres wolsel most sizenaTA | | 408 | | 12.11 | Use of Modulators and Detectors | | 409 | | | Worked Out Examples | | 410 | | | Tutorial Exercise | | 413 | | | References and Suggested Reading | | 413 | | | Transverse Pumping | | | | | Part B—Types (ball) Indibution of | | 415 | | | Advantages of End Pumping and areas of a second a second a second | | li de | | 1. Introd | | | 417 | | 1.1 | Objective and a graph of the collection c | | 417 | | 1.2 | C 1.1 C I will be said to the state of t | | 418 | | 1.3 | *** *** *** *** *** *** *** *** *** ** | | 418 | | 1.4 | Neodymium Lasers | | 418 | | 1.5 | Nd-yag Laser | | 418 | | 11.6 | Nd-glass Laser | | 418 | | 1.7 | Alexandrite Laser | | 419 | | 1.8 | Fibre Glass Laser | | 419 | | 1.9 | Titanium Sapphire Laser | | 419 | | 1.10 | Colour Centre Lasers | | 419 | | 1.11 | Chromium Lisaf and Chromium Licaf Lasers | | 419 | | 1.12 | Other Solid State Lasers | | 419 | | 1.13 | Liquid Lasers | | 420 | | 1.14 | Gas Lasers | | 420 | | 1.15 | Chemical Lasers | 8.1 | 421 | | 1.16 | X-ray Lasers | | 421 | | 1.17 | Free Electron Lasers | | 421 | | 1.18 | Semiconductor Lasers Concluding Remarks | | 421 | | 1.19 | Concluding Remarks | 2.1.1 | 421 | | 025 0 75 | | Clar | | | 2. Solid | State Lasers 25 State Lasers 15 State Lasers | | 422 | | 202 2.1 | Objective Wedgesed Reading of State Office of State St | | 422 | | 2.2 | Solid State Crystalline And Glass Lasers | | 422 | | 2.3 | Advantages of Solid Crystalline Lasers | | 424 | | 2.4 | Selection of Material | | 424 | | 2.5 | Ruby Laser and Hard Applied Problem 2019 | | 425 | | 2.6 | Construction of the Ruby Laser | | 426 | | 2.7 | Mechanism of Excitation of the Ruby Laser | | 427 | | 2.8 | Uses of Ruby Laser | 2.4 | 420 | | 2.9 | Spiking In Ruby Laser | 2.5 | 428 | | 2.10 | Calcium Fluoride—Uranium Laser | 2.6 | 72) | | 2 11 | Neodymium Lasers | | 430 | | 2.12 | Characteristics of Nd-yag and Nd-glass | | |----------
--|-------| | | Lasers (A Comparative Study) | 430 | | 2.13 | Nd-yag Laser | 432 | | 2.14 | Sensitised Nd-yag Laser | 433 | | 2.15 | Nd-glass Laser | 434 | | 2.16 | Applications of Neodymium Lasers | 438 | | 2.17 | Alexandrite Laser | 439 | | 2.18 | General Description of Alexandrite Laser | 439 | | 2.19 | Geometry of Alexandrite Laser | 440 | | 2.20 | Mechanism of Excitation In Alexandrite Laser | 442 | | 2.21 | Applications of Alexandrite Laser | 443 | | 2.22 | Fibre Glass Laser | 443 | | 2.23 | Geometry of the Fibre Glass Laser | 443 | | 2.24 | Energy Levels and Mechanism of | | | | Excitation In Optical Fibre Laser | 444 | | 2.25 | Applications of Fibre Laser | 445 | | 2.26 | Solid State Tunable Laser | 446 | | 2.27 | Titanium Sapphire Laser | 447 | | 2.28 | Laser Structure | 447 | | 2.29 | Mechanism of Excitation | 449 | | 2.30 | Applications of Titanium Sapphire Laser | 450 | | 2.31 | Colour Centre Lasers | 450 | | 2.32 | Geometry of Colour Centre Lasers | 451 | | 2.33 | Mechanism of Excitation Of Colour RE Centre Lasers | 452 | | 2.34 | Applications of Colour Centre Laser | 453 | | 2.35 | Chromium Licaf and Chromium Lisaf Lasers | 453 | | 2.36 | Geometry of Chromium Licaf And Lisaf Lasers | 454 | | 2.37 | Mechanism of Excitation TSAB A THOGRAY BLOOD | 455 | | 2.38 | Applications of Chromium Lisaf and Licaf Lasers | 456 | | 2.39 | Stoichiometric Laser and 1900aV 19000 0 to another ling A | 456 | | 2.40 | Other Types of Solid State Lasers | 456 | | | Worked Out Examples | 457 | | | Tutorial Exercise team I should need a grant of Carbon Diovide I age to the Dio | 462 | | | References and Suggested Readings | 462 | | | Transversely Excited Laser At Atmospherica Landranujorate | A SSE | | 3. Liqui | id (Dye) Lasers Longitudinally Excited CO. Laser, I. Longitudinally Excited CO. | 464 | | 3.1 | General Characteristics | 464 | | 3.2 | Gemometry of Dye Lasers | 465 | | 3.3 | Pulsed Dye Lasers Pumped by Flash Lamps | 465 | | 3.4 | Tunable Pulsed Lasers Pumped by Other Lasers | 466 | | 3.5 | Tunable Continuous Wave Dye Lasers | 467 | | 3.6 | Mode-locked Ring Dye Laser | 468 | | 3.7 | Mechanism of Excitation of Mode-locked Dye Laser | 468 | #### XX CONTENTS | 2.0 | Characteristics of ivd-yag and Nd-elegal appropriation. | 5/2 | 470 | |----------|--|-------|-----| | 3.8 | Applications of Dye Laser | | 471 | | 14 | Worked Out Examples | ET | 473 | | | Tutorial Exercise References and Suggested Readings | 41 | 473 | | | References and Suggested Readings | . 7,1 | 7/3 | | 4. Gas I | Applications of Neodymina Lesers | | 475 | | t. Gas I | Alexandrite ager Entract sentences for seneral Rieses. | 71 | | | 4.1 | Gas Discharge man Lorinbankel A to notigin sell ferensil | | 475 | | 4.2 | Helium-neon Laser | 61 | 476 | | 4.3 | Geometry of He-ne Laser | | 477 | | 4.4 | Energy Levels In He-ne Laser | | 478 | | 4.5 | Applications of He-ne Laser Argon Ion Laser 1028 | 8.5 | 481 | | 4.6 | Argon Ion Laser Task I ask O and I ad he varamout | | 482 | | 4.7 | Mechanism of Excitation In Argon-ion Laser | | 482 | | 4.8 | Construction of Argon Ion Laser | | 484 | | 4.9 | Krypton Ion Laser | 25 | 486 | | 4.10 | Applications of Argon and Krypton Ion Lasers | | 487 | | 4.11 | Metal Vapour Lasers | | 488 | | 4.12 | Helium-cadmium Laser | | 488 | | 4.13 | Structure of He-cd Laser | | 489 | | 4.14 | Mechanism of Excitation Of-CHelium-cadmium Laser | | 489 | | 4.15 | Applications of Helium-cadmium Laser | | 490 | | 4.16 | Helium-selenium Laser | | 491 | | 4.17 | Mechanism Of Operation Of-SHelium-selenium Laser | | 491 | | 4.18 | Copper Vapour Laser (Cvl) | | 492 | | 4.19 | Geometry of Copper Vapour Laser | | 493 | | 4.20 | Mechanism of Excitation | | 493 | | 4.21 | Gold Vapour Laser | - 51 | 494 | | 4.22 | Lead Vapour Laser San Lead marmond 10 mm . There A | | 495 | | 4.23 | Applications of Copper Vapour Laser & | | | | 257 | APGold Vapour Laser | | 495 | | 4.24 | Carbon Dioxide Laser | | 495 | | 4.25 | Geometry of Carbon Dioxide Laser | | 496 | | 4.26 | Wave-guide Lasers | | 496 | | 4.27 | Transversely Excited Laser At Atmospheric | | | | ARE | URPressure (Tea Laser) | films | 497 | | 4.28 | Longitudinally Excited CO. Laser | | 498 | | 4.29 | Gas Dynamic Laser | | 499 | | 4.30 | Applications Of CO. Laser | | 500 | | 4.31 | Every Lasers The Files A to british A stage Level hosters | | 500 | | 4.32 | Tribute I seems to the | | 502 | | 4.33 | Applications of Excimer Lasers | | 504 | | 4.34 | Nitrogen Laser | | 504 | | 4 35 | The state
of s | | 505 | | | | | | | | CONTENTS | xxi | |----------|--|-----| | 4.36 | Applications of N ₂ Laser 1000000000000000000000000000000000000 | 506 | | 4.37 | Far-infrared Gas Lasers | 506 | | 4.38 | Structure of Far-infrared Laser | 507 | | 4.39 | Mechanism of Excitation of RAFar-infrared Lasers | 507 | | 4.40 | Applications of Far-infrared Lasers | 507 | | | Worked Out Examples | 507 | | 553 | Tutorial Exercise | 514 | | | References and Suggested Reading | 515 | | | stees V soneness A noticity) | | | 5. Chem | ical, X-ray and Free Electron Lasers | 516 | | 5.1 | Hydrogen Chloride Laser | 517 | | 5.2 | Hydrogen Fluoride Laser | 517 | | 5.3 | Deuterium Fluoride—Carbon Dioxide Laser | 519 | | 5.4 | Applications of Chemical Lasers | 521 | | 5.5 | A-ray Lasers | 521 | | 5.6 | Applications of X-ray Lasers and adding A ross The squad | 523 | | 5.7 | Free Electron Lasers (Fel) | 523 | | 5.8 | Structure of Free Electron Lasers | 525 | | 5.9 | Applications of Fel Infrarally arosa A to another Hugg A Jairten | 526 | | 364 | Worked Out Examples | 526 | | E OF | Littorial Evercice | 527 | | 308 | References and Suggested Reading | 527 | | 6. Semic | Description of Signal In Optical Theorems at him stated | 529 | | DOE - | | | | 6.1 | Material Processing Mechanism and que Da noisubortni | 529 | | 6.2 | Characteristics of Semiconductors Lasers and goldling stuff | 529 | | 6.3 | Semiconductor Diode Lasers around fill we appoint grithin D | 531 | | 6.4 | Heterojunction Semiconductor Materials | 532 | | 6.6 | Double Heterostructure Laser Structure of the Laser | 534 | | 6.7 | Section 2 - Commercial Control of the th | 536 | | 10.7 | Design with the Direction Normal To The | 1.0 | | | | 537 | | 6.8 | Homojunction Lasers | 538 | | 6.10 | Heterojunction Lasers Oventum well Lasers | 538 | | 6.11 | Quantum-well Lasers and best beleeging but the recovered of | 539 | | 0.11 | Design With the Lateral Direction | | | | Parallel To the Plane of the Junction 1910 has writings all are | | | 6.12 | Structures with Gain Guidence Index Guided Structures | 541 | | 6.14 | | 542 | | 6.15 | High Power Semiconductor Diode Lasers | 543 | | 6.16 | Single Mode Lasers Multimode Lasers | 543 | | 6.17 | | 544 | | 0.17 | Surface-emitting Lasers (Sels) | 545 | ### xxii CONTENTS | 6.18 | 11 | 547 | |----------|--|------------| | | worked Out Examples | 547 | | | Tutorial Exercise | 550 | | | References and Suggested Readings | 551 | | 7. Lase | r Schemes—A Few More Options | 553 | | 7.1 | Stoichiometric Laser | 553 | | 7.2 | Spin-flip Raman Laser | 553 | | 7.3 | Cyclotron Resonance Masers | 555 | | 7.4 | Plasma Recombination Laser | 556 | | | References and Suggested Readings | 558 | | | Part C—Principles, Types and Applications | 559 | | 1. Intro | Applications of Chemical Layers, Teel man Albarets Neav Layers | 561 | | 1.1 | Scope of Laser Applications | 561 | | | Worked Out Examples | 561 | | 2. Indus | strial Applications of Lasers (Material Processing) | 564 | | 2.1 | Industry Park Total Company Religious Chief Liberto W | 564 | | 2.2 | High Power Gas Lasers | 564 | | 2.3 | Material Processing with Lasers | 565
566 | | 2.4 | Metals and Lasers | 567 | | 2.5 | Interactions | 568 | | 2.6 | Material Processing Mechanism | 570 | | 2.7 | Hole Drilling with Lasers | 572 | | 2.8 | Cutting Process with Lasers | 576 | | 2.9 | Laser Welding along all the bound of bou | 578 | | 2.10 | The Welding Process | 579 | | 2.11 | Micro Laser Welding | 580 | | 2.12 | Deep Penetration Welding (High Power Laser Welding) | 581 | | 2.13 | Laser Hardening and the small | 583 | | | Worked Out Examples | 586 | | | Tutorial Exercise | 588 | | 339 | References and Suggested Readings | 589 | | . Lasers | In Industry and Science—Some More Applications | 590 | | 3.1 | Enhancetion of Electronic C. 2005 600 also also especiated | | | 3.1 | Fabrication of Electronic Components | 590 | | 3.3 | Thin Films Thick Films | 591 | | 3.4 | THICK I THIIS | 591 | | 3.5 | Manufacture of Circuits Micro Machining | 592 | | 3.3 | IVIICIO IVIACIIIIIIIO | 504 | | | | CONTENTS | xxiii | |----|---------
--|-------| | | | Off-axis Holography vigario le II M | | | | 3.6 | Marking with Lasers | 595 | | | 3.7 | wire Striping with Lasers | 595 | | | 3.8 | Lasers In Nuclear Science | 596 | | | 3.9 | Isotone Senaration | 596 | | | 3.10 | Nuclear Fusion with Lasers | 599 | | | 3.11 | Laser-aided Fusion Reactor | 601 | | | 3.12 | Counting of Atoms with Lasers | 604 | | | 3.13 | Lasers In Spectroscopy | 604 | | | 3.14 | Legare In Chamietry | 607 | | | 3.15 | Tracking of Rodies In Motion G by Using Lasers | 608 | | | 3.16 | Light Detection and Kanging (Ligar) | 609 | | | 3.17 | Precision Measurement With Laser | 611 | | | 3.18 | Lagare For Inspection of Products | 612 | | | 3.19 | Scanning Laser Ream Devices | 613 | | | 3.19 | Ontical Triangulation with Lasers | 613 | | | 3.20 | Management of Valority | 615 | | | 3.20 | Worked Out Examples | 616 | | | | Venemoterismi amount distriction | 619 | | | | References and Suggested Readings | 620 | | | | References and Suggested Readings with a supplied and suggested Readings with a supplied and suggested Readings | 020 | | 4. | Laser | Communication Safety Selegated Seleg | 622 | | | 4.1 | References and Suggested Readings | 622 | | | 4.2 | Degradation of Signal In Optical Fibres | 623 | | | 4.3 | Optical Sources for Fibre Optical Communication | 624 | | | 4.4 | Powering and Counling | 625 | | | 4.5 | Photo (or Photon) Detectors | 629 | | | 4.6 | Operation of Optical Receivers | 631 | | | 4.7 | Digital Transmission | 632 | | | 4.8 | Analogue Communication Systems | 635 | | | 4.9 | Coherent Communication | 637 | | | 4.10 | Essential Characteristics of Laser In | 0.00 | | | 1.10 | Fibre Optic Communication | 638 | | | 4.11 | Laser communication with Superpress and a second second | 640 | | | 7.11 | Worked Out Examples | 643 | | | | Tuturial Exercise | 644 | | | | References and Suggested Readings | 644 | | | | Richhla Flamenie UVLJ 1966.1 | 1044 | | 5. | . Holog | raphy and Its Applications | 646 | | | 5.1 | Basic Principles-a Relook | 646 | | | 5.2 | Types of Holograms | 647 | | | 5.3 | Intensity Distribution In a Hologram | 648 | | | 5.4 | In-line Holography | 649 | | | 5.5 | Far-field Fraunhofer Hologram A home south to the south to the | 650 | | | | | | #### xxiv CONTENTS | 5.6 | Off-axis Holography | 65 | |--------|---|------------| | 5.7 | Fourier Hologram | 65 | | 5.8 | Thick Hologram | 65 | | 5.9 | Reflection Holography | | | 5.10 | Multiplexed Holograms | 65 | | 5.11 | Colour Holograms | 65 | | 5.12 | Local Reference Beam (Lth) Holograms | 65 | | 5.13 | Composite Holograms | 659 | | 5.14 | Computer Holograms | 660 | | 5.15 | Applications of Holography | 66 | | 5.16 | Holographic Microscopy | 662 | | 5.17 | Particle Size Analysis | 662 | | 5.18 | Pulsed Laser Photography | 664 | | 5.19 | Holographic Data Storage and Retrieval | 665 | | 5.20 | Holographic Memories | 666 | | 5.21 | Television Tana Play Davisa | 666 | | 5.22 | Acoustic Holography | | | 5.23 | Holographic Interferometry | 668 | | 5.24 | Generation Of Contours | 670 | | 5.25 | Quatum Holography | 672 | | 200 | Worked Out Examples | 673
674 | | | Tutorial Exercise | 677 | | Ca - | References and Suggested Readings | 678 | | | Degradation of Signal In Optical Pibros (1994) but a seed for | 0/8 | | Milita | ary Applications of Lasers and O and House and Hango | 680 | | 6.1 | Laser Range Finders | | | 6.2 | Design of a Laser Pance Finder | 680 | | 6.3 | Design of a Laser Range Finder Tracking by Lasers | 683 | | 6.4 | Target Designators | 685 | | 6.5 | Beam Riding | 686 | | 6.6 | Lacer Cimulators | 686 | | 6.7 | Laser Radar | 688 | | 6.8 | Laser Communication with Submarines | 688 | | 6.9 | Technical Aspects of Slc (Submarine Laser | 690 | | -0 | Communication or Satellite Laser Communication) | | | 6.10 | Ocean Attenuation | 691 | | 6.11 | Laser Gyro | 691 | | 6.12 | Laser Against Cruise Missiles Coming aTowards a Ship | 693 | | 6.13 | Sea-skimming Missiles | 695 | | 6.14 | Merits of Laser Weapons | 695 | | 6.15 | Types of Lasers for Anti-missile Role | 695 | | 6.16 | Damage to the Target | 696 | | 6.17 | Concluding Remarks | 696 | | 6 | Reference and Suggested Readings | 697 | | | and buggested readilitys | 698 | | * | CONTE | NTS | XXV | |----------|--|-----|--------| | 7. Laser | rs in Medical Science | | 699 | | 7.1 | Medical Lasers | | 699 | | 7.2 | Laser Diagnostics | | 700 | | 7.3 | Photomedicine | | 702 | | 7.4 | Lasers In Opthalmology | | 703 | | 7.5 | Photocoagulation | | 703 | | 7.6 | Treatment of Corneal Ulcers | | 704 | | 7.7 | Helping The Blind | | 704 | | 7.8 | Laser In-situ Keratomileusis (Lasik) | | 705 | | 7.9 | Laser In The Treatment of Glaucoma | | 706 | | 7.10 | Laser for General Surgery | | 707 | | 7.11 | Surgery with Free Electron Lasers (Fel) | | 708 | | 7.12 | Lasers In Dermatology | | 709 | | 7.13 | Cardiology | | 710 | | 7.14 | Lasers Against Viruses | | 710 | | 7.15 | Treatment For Infertility | | 710 | | 7.16 | Lasers In Dentistry | | 711 | | 7.17 | Lasers used In Medicine | | 711 | | 7.17 | Worked Out Examples | | 712 | | | Tutorial Exercise | | 714 | | | References and Suggested Readings | 1 | 714 | | | References and Suggested Readings | | /14 | | 8. Laser | Hazards and Laser Safety | | 716 | | 8.1 | Laser Hazards | | 716 | | 8.2 | Classification of Laser Hazards | | 716 | | 8.3 | Laser Safety | | 717 | | | References and Suggested Readings | | 718 | | 9. Some | Newcomers | | 719 | | 9.1 | Optical Computing | | 719 | | 9.2 | Optical Connection between Integrated Circuits | | 722 | | 9.3 | Star Wars | | 723 | | | References and Suggested Reading | | 726 | | 10. Misc | cellaneous Notes | | 727 | | 10.1 | Line Shape Function | | 727 | | 10.2 | Nonlinear Effects and Harmonic Generation | | 728 | | 10.3 | Phase Matching | | 730 | | 10.4 | Bistable Elements | | 730 | | 10.5 | Two-photon Absorption | | 732 | | | References and Suggested Readings | | 733 | | | Conversion Tables | | 734 | | | Physical Constants and their Values | | 737 | | | Glossary | | 738 | | | Index | | 753 | | | | | 1 2/2/ |