26 Current and Resistance

mema

With About Atom

29 Magnetic Fields Due to Currents.

33 Electromagnetic Wester words

44 Quarts, Leptons, and the Rio Bono

1 Measurement 1

1-1 MEASURING THINGS, INCLUDING LENGTHS 1

What Is Physics? 1

Measuring Things 1

The International System of Units 2

Changing Units 3

Length 3

Significant Figures and Decimal Places 4 appulant bear mentality of

31 Electromagnetic Oscillations and Allemagnami 1-1.

Time 5

1-3 MASS 6 QUESTIONS; Magnatism of Matter 82 MASS

Mass 6

REVIEW & SUMMARY & PROBLEMS &

2 Motion Along a Straight Line 11

2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY 11

What Is Physics? 11

Motion 12

Position and Displacement 12

Average Velocity and Average Speed 13

2-2 INSTANTANEOUS VELOCITY AND SPEED 16

Instantaneous Velocity and Speed 16

2-3 ACCELERATION 18 SUBJECT BOTH THE THE PROPERTY OF THE PROPE

Acceleration 18

2-4 CONSTANT ACCELERATION 21

Constant Acceleration: A Special Case 21

Another Look at Constant Acceleration 24

2-5 FREE-FALL ACCELERATION 25

Free-Fall Acceleration 25

2-6 GRAPHICAL INTEGRATION IN MOTION ANALYSIS 27

Graphical Integration in Motion Analysis 27

REVIEW & SUMMARY 28 PROBLEMS 29

3 Vectors 34

3-1 VECTORS AND THEIR COMPONENTS 34

What Is Physics? 34

Vectors and Scalars 34

Adding Vectors Geometrically 35

Components of Vectors 36

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS 40

Unit Vectors 40

Vectors and the Laws of Physics 41 (1) Information a graph a problem 2

Adding Vectors by Components 40

3-3 MULTIPLYING VECTORS 44

Multiplying Vectors 44 Diagram C estall bas owl or node to

REVIEW & SUMMARY 49 PROBLEMS 50

Motion in Two and Three Dimensions 53

4-1 POSITION AND DISPLACEMENT 53 Done visited at 1818 1819

What is Physics? 53 mamoM asemil bee seed to select the

Position and Displacement 54

4-2 AVERAGE VELOCITY AND INSTANTANEOUS VELOCITY 55

Average Velocity and Instantaneous Velocity 56

4-3 AVERAGE ACCELERATION AND INSTANTANEOUS ACCELERATION 58

19 The Kinglic The

21 Coulomb's Law

99 Harsing Fields

23 Gauss' Law

Average Acceleration and Instantaneous Acceleration 59

4-4 PROJECTILE MOTION 61

Projectile Motion 61

4-5 UNIFORM CIRCULAR MOTION 67

Uniform Circular Motion 67 1 3 dt bots 155 d authors on 5 at

4-6 RELATIVE MOTION IN ONE DIMENSION 69

Relative Motion in One Dimension 69

4-7 RELATIVE MOTION IN TWO DIMENSIONS 71

Relative Motion in Two Dimensions 71

REVIEW & SUMMARY 72 PROBLEMS 73

5 Force and Motion-I so

5-1 NEWTON'S FIRST AND SECOND LAWS 80

What Is Physics? 80

Newtonian Mechanics 81

Newton's First Law 81

Force 82

Mass 83

Newton's Second Law 84

5-2 SOME PARTICULAR FORCES 88

Some Particular Forces 88

5-3 APPLYING NEWTON'S LAWS 92

Newton's Third Law 92

Applying Newton's Laws 94

REVIEW & SUMMARY 100 PROBLEMS 100

層的影響的網 肢翅翅科 為 特

6 Force and Motion—II 106
6-1 FRICTION 106
What Is Physics? 106
Friction 106
Properties of Friction 108

6-2 THE DRAG FORCE AND TERMINAL SPEED 112
The Drag Force and Terminal Speed 112

6-3 UNIFORM CIRCULAR MOTION 115
Uniform Circular Motion 115
REVIEW & SUMMARY 120 PROBLEMS 121

7 Kinetic Energy and Work 127
7-1 KINETIC ENERGY 127
What Is Physics? 127
What Is Energy? 127
Kinetic Energy 128

7-2 WORK AND KINETIC ENERGY 129
Work 129
Work and Kinetic Energy 130

7-4 WORK DONE BY A SPRING FORCE 137
Work Done by a Spring Force 137

7-5 WORK DONE BY A GENERAL VARIABLE FORCE 140
Work Done by a General Variable Force 140

7-6 POWER 144
Power 144
REVIEW & SUMMARY 146 PROBLEMS 147

8 Potential Energy and Conservation of Energy 151
8-1 POTENTIAL ENERGY 151
What Is Physics? 151
Work and Potential Energy 152
Path Independence of Conservative Forces 153
Determining Potential Energy Values 155
8-2 CONSERVATION OF MECHANICAL ENERGY 158

8-3 READING A POTENTIAL ENERGY CURVE 161
Reading a Potential Energy Curve 161

Conservation of Mechanical Energy 158

8-5 CONSERVATION OF ENERGY 169

Conservation of Energy 169

REVIEW & SUMMARY 173 PROBLEMS 174

9 Center of Mass and Linear Momentum 182 182 184 184 182 184 182 What Is Physics? 182

9-2 NEWTON'S SECOND LAW FOR A SYSTEM OF PARTICLES 188
Newton's Second Law for a System of Particles 188

9-3 LINEAR MOMENTUM 192
Linear Momentum 192
The Linear Momentum of a System of Particles 193

9-4 COLLISION AND IMPULSE 194
Collision and Impulse 194

The Center of Mass 183

9-5 CONSERVATION OF LINEAR MOMENTUM 198
Conservation of Linear Momentum 198

9-6 MOMENTUM AND KINETIC ENERGY IN COLLISIONS 201 (as all-ef off)
Momentum and Kinetic Energy in Collisions 201
Inelastic Collisions in One Dimension 202

9-7 ELASTIC COLLISIONS IN ONE DIMENSION 205
Elastic Collisions in One Dimension 205

9-8 COLLISIONS IN TWO DIMENSIONS 208
Collisions in Two Dimensions 208

9-9 SYSTEMS WITH VARYING MASS: A ROCKET 209
Systems with Varying Mass: A Rocket 209
REVIEW & SUMMARY 211 PROBLEMS 212

10-1 ROTATIONAL VARIABLES 221
What Is Physics? 222
Rotational Variables 223
Are Angular Quantities Vectors? 228
ANGER ANGULAR ANGULAR

10-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION 230
Rotation with Constant Angular Acceleration 230

10-3 RELATING THE LINEAR AND ANGULAR VARIABLES 232

Relating the Linear and Angular Variables 232

10-4 KINETIC ENERGY OF ROTATION 235 NAME AND TABLE A ME TABLE AND TABLE Kinetic Energy of Rotation 235

10-5 CALCULATING THE ROTATIONAL INERTIA 237 Calculating the Rotational Inertia 237

10-6 TORQUE 241 Torque 242

10-7 NEWTON'S SECOND LAW FOR ROTATION 243 Newton's Second Law for Rotation 243

10-8 WORK AND ROTATIONAL KINETIC ENERGY 246 Work and Rotational Kinetic Energy 246 REVIEW & SUMMARY 249 PROBLEMS 250

11 Rolling, Torque, and Angular Momentum 255 11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED 255 What Is Physics? 255 Rolling as Translation and Rotation Combined 255

11-2 FORCES AND KINETIC ENERGY OF ROLLING 258 The Kinetic Energy of Rolling 258 The Forces of Rolling 259

11-3 THE YO-YO 261 The Yo-Yo 261

11-4 TORQUE REVISITED 262 Torque Revisited 263

11-5 ANGULAR MOMENTUM 265 Angular Momentum 265

11-6 NEWTON'S SECOND LAW IN ANGULAR FORM 267 Newton's Second Law in Angular Form 267

11-7 ANGULAR MOMENTUM OF A RIGID BODY 270 The Angular Momentum of a System of Particles 270 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis 271

11-8 CONSERVATION OF ANGULAR MOMENTUM 272 Conservation of Angular Momentum 272

11-9 PRECESSION OF A GYROSCOPE 277 Precession of a Gyroscope 277 PROBLEMS 279 REVIEW & SUMMARY 278

12 Equilibrium and Elasticity 285 12-1 EQUILIBRIUM 285 What Is Physics? 285

Equilibrium 285 The Requirements of Equilibrium 287 The Center of Gravity 288

12-2 SOME EXAMPLES OF STATIC EQUILIBRIUM 290 Some Examples of Static Equilibrium 290

12-3 ELASTICITY 296 Indeterminate Structures 296 Elasticity 297 REVIEW & SUMMARY 301 PROBLEMS 301

13 Gravitation 308 13-1 NEWTON'S LAW OF GRAVITATION 308 What Is Physics? 308 Newton's Law of Gravitation 309

13-2 GRAVITATION AND THE PRINCIPLE OF SUPERPOSITION 311 Gravitation and the Principle of Superposition 311

13-3 GRAVITATION NEAR EARTH'S SURFACE 313 Gravitation Near Earth's Surface 314

13-4 GRAVITATION INSIDE EARTH 316 Gravitation Inside Earth 317 than the transfer in the state of the

13-5 GRAVITATIONAL POTENTIAL ENERGY 318 Gravitational Potential Energy 318

13-6 PLANETS AND SATELLITES: KEPLER'S LAWS Planets and Satellites: Kepler's Laws 323

24年1月1日日本

美国工作。图除多数报看 化等

THE PERSON NAMED IN COLUMN

AS CHRESTON OF RESIDENCE

Concern street Material Lieup 1 25

PRODUCTION OF THE PARTY OF THE

13-7 SATELLITES: ORBITS AND ENERGY 325 Satellites: Orbits and Energy 325

13-8 EINSTEIN AND GRAVITATION 328 Einstein and Gravitation 328 REVIEW & SUMMARY 330 PROBLEMS 331

HEIRS TO DESTRUCE WHICH AND THE VENERAL AND TH 14 Fluids 338 14-1 FLUIDS, DENSITY, AND PRESSURE 338 What Is Physics? 338 What Is a Fluid? 338 The completion of the state of Density and Pressure 339

14-2 FLUIDS AT REST 340 Fluids at Rest 341

14-3 MEASURING PRESSURE 344 Measuring Pressure 344

19 The Emelic Theory of Eases

14-4 PASCAL'S PRINCIPLE 345

Pascal's Principle 345

14-5 ARCHIMEDES' PRINCIPLE 346

Archimedes' Principle 347

14-6 THE EQUATION OF CONTINUITY 350 28 14 8 884 280 481 281

Ideal Fluids in Motion 350

The Equation of Continuity 351

14-7 BERNOULLI'S EQUATION 353

Bernoulli's Equation 353

REVIEW & SUMMARY 357 PROBLEMS 357

15 Oscillations 365

15-1 SIMPLE HARMONIC MOTION 365

What Is Physics? 366

Simple Harmonic Motion 366

The Force Law for Simple Harmonic Motion 371

15-2 ENERGY IN SIMPLE HARMONIC MOTION 373

Energy in Simple Harmonic Motion 373

15-3 AN ANGULAR SIMPLE HARMONIC OSCILLATOR 375

An Angular Simple Harmonic Oscillator 375

15-4 PENDULUMS, CIRCULAR MOTION 376

Pendulums 377

Simple Harmonic Motion and Uniform Circular Motion 380

15-5 DAMPED SIMPLE HARMONIC MOTION 382

Damped Simple Harmonic Motion 382

15-6 FORCED OSCILLATIONS AND RESONANCE 384

Forced Oscillations and Resonance 384

REVIEW & SUMMARY 386 PROBLEMS 386

16 Waves-1 392

16-1 TRANSVERSE WAVES 392

What Is Physics? 393

Types of Waves 393

Transverse and Longitudinal Waves 393

Wavelength and Frequency 394

The Speed of a Traveling Wave 397

16-2 WAVE SPEED ON A STRETCHED STRING 400

Wave Speed on a Stretched String 400

16-3 ENERGY AND POWER OF A WAVE TRAVELING ALONG

A STRING 402

Energy and Power of a Wave Traveling Along a String 402

16-4 THE WAVE EQUATION 404

The Wave Equation 404

16-5 INTERFERENCE OF WAVES 406

The Principle of Superposition for Waves 406

Interference of Waves 407

16-6 PHASORS 410

Phasors 410

16-7 STANDING WAVES AND RESONANCE 413

Standing Waves 413

Standing Waves and Resonance 415

REVIEW & SUMMARY 418 PROBLEMS 419 HAR THE REVIEW & SUMMARY 418

17 Waves-II 423

17-1 SPEED OF SOUND 423

What Is Physics? 423

Sound Waves 423

The Speed of Sound 424

17-2 TRAVELING SOUND WAVES 426

Traveling Sound Waves 426

17-3 INTERFERENCE 429

Interference 429

17-4 INTENSITY AND SOUND LEVEL 432

Intensity and Sound Level 433

17-5 SOURCES OF MUSICAL SOUND 436

Sources of Musical Sound 437

17-6 BEATS 440

Beats 441

17-7 THE DOPPLER EFFECT 442

The Doppler Effect 443

17-8 SUPERSONIC SPEEDS, SHOCK WAVES 447

Supersonic Speeds, Shock Waves 447

REVIEW & SUMMARY 448 PROBLEMS 449

18 Temperature, Heat, and the First Law of Thermodynamics 454

The Adiabatic Expansion of an ideal Gos Assa

18-1 TEMPERATURE 454

What Is Physics? 454

Temperature 455

The Zeroth Law of Thermodynamics 455

Measuring Temperature 456

18-2 THE CELSIUS AND FAHRENHEIT SCALES 458

The Celsius and Fahrenheit Scales 458

18-3 THERMAL EXPANSION 460
Thermal Expansion 460

18-4 ABSORPTION OF HEAT 462

Temperature and Heat 463

The Absorption of Heat by Solids and Liquids 464

18-5 THE FIRST LAW OF THERMODYNAMICS 468

A Closer Look at Heat and Work 468
The First Law of Thermodynamics 471
Some Special Cases of the First Law of
Thermodynamics 472

18-6 HEAT TRANSFER MECHANISMS 474

Heat Transfer Mechanisms 474

REVIEW & SUMMARY 478 PROBLEMS 480

19 The Kinetic Theory of Gases 485

19-1 AVOGADRO'S NUMBER 485

What is Physics? 485 Avogadro's Number 486

19-2 IDEAL GASES 486

Ideal Gases 487

19-3 PRESSURE, TEMPERATURE, AND RMS SPEED 490

Pressure, Temperature, and RMS Speed 490

19-4 TRANSLATIONAL KINETIC ENERGY 493

Translational Kinetic Energy 493

19-5 MEAN FREE PATH 494

Mean Free Path 494

19-6 THE DISTRIBUTION OF MOLECULAR SPEEDS 496

The Distribution of Molecular Speeds 497

19-7 THE MOLAR SPECIFIC HEATS OF AN IDEAL GAS 500

The Molar Specific Heats of an Ideal Gas 500

19-8 DEGREES OF FREEDOM AND MOLAR SPECIFIC HEATS 504

Degrees of Freedom and Molar Specific Heats 504

A Hint of Quantum Theory 506

19-9 THE ADIABATIC EXPANSION OF AN IDEAL GAS 507

The Adiabatic Expansion of an Ideal Gas 507

REVIEW & SUMMARY 511 PROBLEMS 512

20 Entropy and the Second Law of Thermodynamics 517

20-1 ENTROPY 517

What Is Physics? 518

Irreversible Processes and Entropy 518

Change in Entropy 519

nedecad system will

TES PHENNIL ato

The Second Law of Thermodynamics 522

20-2 ENTROPY IN THE REAL WORLD: ENGINES 524

近個2個問 影腦2針 4-終

以外的 化进制制度 是一种

過度時間以到1980年間。1980年

和原理 联络解析 经间额服务 多數

到紅發現 社話 的诗程 現據 泰斯

Entropy in the Real World: Engines 524

20-3 REFRIGERATORS AND REAL ENGINES 529

Entropy in the Real World: Refrigerators 530

The Efficiencies of Real Engines 531

20-4 A STATISTICAL VIEW OF ENTROPY 532

A Statistical View of Entropy 532

REVIEW & SUMMARY 536 PROBLEMS 537

21 Coulomb's Law 541

21-1 COULOMB'S LAW 541

What Is Physics? 542

Electric Charge 542

Conductors and Insulators 544

Coulomb's Law 545

21-2 CHARGE IS QUANTIZED 551

Charge Is Quantized 551

21-3 CHARGE IS CONSERVED 553

Charge Is Conserved 553

REVIEW & SUMMARY 554 PROBLEMS 555

22 Electric Fields 558

22-1 THE ELECTRIC FIELD 558

What Is Physics? 558

The Electric Field 559

Electric Field Lines 559

22-2 THE ELECTRIC FIELD DUE TO A CHARGED PARTICLE 561

The Electric Field Due to a Point Charge 561

22-3 THE ELECTRIC FIELD DUE TO A DIPOLE 563

The Electric Field Due to an Electric Dipole 564

22-4 THE ELECTRIC FIELD DUE TO A LINE OF CHARGE 566

The Electric Field Due to Line of Charge 566

22-5 THE ELECTRIC FIELD DUE TO A CHARGED DISK 571

The Electric Field Due to a Charged Disk 571

22-6 A POINT CHARGE IN AN ELECTRIC FIELD 573

A Point Charge in an Electric Field 573

22-7 A DIPOLE IN AN ELECTRIC FIELD 575

A Dipole in an Electric Field 576 Common and A State of the Common Action of the Common Actio

REVIEW & SUMMARY 578 PROBLEMS 579

23 Gauss' Law 585 In an inches a camera annual annual and a dec

23-1 ELECTRIC FLUX 585 way should advanged a as Ind graymod marced A

What Is Physics 585

Electric Flux 586

23-2 GAUSS' LAW 590

Gauss' Law 590

Gauss' Law and Coulomb's Law 592

23-3 A CHARGED ISOLATED CONDUCTOR 594

A Charged Isolated Conductor 594

23-4 APPLYING GAUSS' LAW: CYLINDRICAL SYMMETRY 597

BYSTER AND BOTH ON THANKING BILLIAN

20-1 指於經濟學 (48 百分 15) 15 14 274

Applying Gauss' Law: Cylindrical Symmetry 597

23-5 APPLYING GAUSS' LAW: PLANAR SYMMETRY 599

Applying Gauss' Law: Planar Symmetry 599

23-6 APPLYING GAUSS' LAW: SPHERICAL SYMMETRY 601

Applying Gauss' Law: Spherical Symmetry 601

REVIEW & SUMMARY 603 PROBLEMS 603

24 Electric Potential 609

24-1 ELECTRIC POTENTIAL 609

What Is Physics? 609

Electric Potential and Electric Potential Energy 610

24-2 EQUIPOTENTIAL SURFACES AND THE ELECTRIC FIELD 614

Equipotential Surfaces 614

Calculating the Potential from the Field 615

24-3 POTENTIAL DUE TO A CHARGED PARTICLE 618

Potential Due to a Charged Particle 618

Potential Due a Group of Charged Particles 619

24-4 POTENTIAL DUE TO AN ELECTRIC DIPOLE 621

Potential Due to an Electric Dipole 621

24-5 POTENTIAL DUE TO A CONTINUOUS CHARGE DISTRIBUTION 622

Potential Due to a Continuous Charge Distribution 622

24-6 CALCULATING THE FIELD FROM THE POTENTIAL 625

Calculating the Field from the Potential 625

24-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF Charged Particles 627

Electric Potential Energy of a System of Charged Particles 627

24-8 POTENTIAL OF A CHARGED ISOLATED CONDUCTOR 630

Potential of Charged Isolated Conductor 630 museum 318 2018 341 Augustian 1988 341 August

REVIEW & SUMMARY 631 PROBLEMS 632

25 Capacitance 639

25-1 CAPACITANCE 639

What Is Physics? 639

Capacitance 639

25-2 CALCULATING THE CAPACITANCE 641

Calculating the Capacitance 642

25-3 CAPACITORS IN PARALLEL AND IN SERIES 645

Capacitors in Parallel and in Series 646

25-4 ENERGY STORED IN AN ELECTRIC FIELD 650 Albeit alternation 65

Energy Stored in an Electric Field 650 1748 481 184 283 187 283 188 188 188 188

25-5 CAPACITOR WITH A DIELECTRIC 653

Capacitor with a Dielectric 653

Dielectrics: An Atomic View 655

25-6 DIELECTRICS AND GAUSS' LAW 657

Dielectrics and Gauss' Law 657

REVIEW & SUMMARY 660 PROBLEMS 660

26 Current and Resistance 665

28-1 ELECTRIC CURRENT 665

What Is Physics? 665

Electric Current 666

26-2 CURRENT DENSITY 668

Current Density 669

26-3 RESISTANCE AND RESISTIVITY 672

Resistance and Resistivity 673

26-4 OHM'S LAW 676

Ohm's Law 676

A Microscopic View of Ohm's Law 678

26-5 POWER, SEMICONDUCTORS, SUPERCONDUCTORS 680

188 SEPTEMBER | NO SEPTEMBER | SEPTEMBER |

Calculation the Magnetic Field Due to a Carront 1749

Service of the servic

The Magnetic Oxade Manager year

Power in Electric Circuits 680

Semiconductors 682

Superconductors 683

REVIEW & SUMMARY 683 PROBLEMS 684

27 Circuits 689

27-1 SINGLE-LOOP CIRCUITS 689 BLANK DRI NICHTER 10894 4-85

What Is Physics? 690

"Pumping" Charges 690

Work, Energy, and Emf 691

Calculating the Current in a Single-Loop Circuit 692

Other Single-Loop Circuits 694

Potential Difference Between Two Points 695

27-2 MULTILOOP CIRCUITS 699
Multiloop Circuits 699

27-3 THE AMMETER AND THE VOLTMETER 706
The Ammeter and the Voltmeter 706

27-4 RC CIRCUITS 706
RC Circuits 707
REVIEW & SUMMARY 711 PROBLEMS 711

28 Magnetic Fields 719

28-1 MAGNETIC FIELDS AND THE DEFINITION OF B 719

What Is Physics? 719

What Produces a Magnetic Field? 720

The Definition of B 720

28-2 CROSSED FIELDS: DISCOVERY OF THE ELECTRON 724
Crossed Fields: Discovery of the Electron 725

28-3 CROSSED FIELDS: THE HALL EFFECT 726
Crossed Fields: The Hall Effect 727

28-4 A CIRCULATING CHARGED PARTICLE 730
A Circulating Charged Particle 730

28-5 CYCLOTRONS AND SYNCHROTRONS 733
Cyclotrons and Synchrotrons 734

28-6 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE 736
Magnetic Force on a Current-Carrying Wire 736

28-7 TORQUE ON A CURRENT LOOP 738
Torque on a Current Loop 738

28-8 THE MAGNETIC DIPOLE MOMENT 740
The Magnetic Dipole Moment 741
REVIEW & SUMMARY 743 PROBLEMS 743

29 Magnetic Fields Due to Currents 748
29-1 MAGNETIC FIELD DUE TO A CURRENT 748
What Is Physics? 748
Calculating the Magnetic Field Due to a Current 749

29-2 FORCE BETWEEN TWO PARALLEL CURRENTS 754
Force Between Two Parallel Currents 754

29-3 AMPERE'S LAW 756 Ampere's Law 756

29-4 SOLENOIDS AND TOROIDS 760 Solenoids and Toroids 760

29-5 A CURRENT-CARRYING COIL AS A MAGNETIC DIPOLE 763
A Current-Carrying Coil as a Magnetic Dipole 763
REVIEW & SUMMARY 766 PROBLEMS 767

30 Induction and Inductance 774
30-1 FARADAY'S LAW AND LENZ'S LAW 774
What Is Physics 774
Two Experiments 775
Faraday's Law of Induction 775
Lenz's Law 778

30-2 INDUCTION AND ENERGY TRANSFERS 781
Induction and Energy Transfers 7811

HARLE WAS TRUE OF THE PARTY AND THE PARTY AN

fredwine \$4.00 Last Spilenes Son

30-3 INDUCED ELECTRIC FIELDS 784
Induced Electric Fields 785

30-4 INDUCTORS AND INDUCTANCE 789
Inductors and Inductance 789

30-5 SELF-INDUCTION 791
Self-Induction 791

30-6 RL CIRCUITS 792 RL Circuits 793

30-7 ENERGY STORED IN A MAGNETIC FIELD 797
Energy Stored in a Magnetic Field 797

30-8 ENERGY DENSITY OF A MAGNETIC FIELD 799
Energy Density of a Magnetic Field 799

30-9 MUTUAL INDUCTION BOO

Mutual Induction BOO PROBLEMS BO3

31 Electromagnetic Oscillations and Alternating Current 811

31-1 LC OSCILLATIONS 811
What Is Physics? 812
LC Oscillations, Qualitatively 812
The Electrical-Mechanical Analogy 814
LC Oscillations, Quantitatively 815

31-2 DAMPED OSCILLATIONS IN AN RLC CIRCUIT 818
Damped Oscillations in an RLC Circuit 819

31-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS 820
Alternating Current 821
Forced Oscillations 822
Three Simple Circuits 822

31-4 THE SERIES RLC CIRCUIT 829
The Series RLC Circuit 829

31-5 POWER IN ALTERNATING-CURRENT CIRCUITS 835

31-6 TRANSFORMERS 838
Transformers 838

REVIEW & SUMMARY 841 PROBLEMS 842 1 THE PROBLEMS 141 S-AS

32 Maxwell's Equations; Magnetism of Matter 847

32-1 GAUSS' LAW FOR MAGNETIC FIELDS 847

What Is Physics? 847

Gauss' Law for Magnetic Fields 848

32-2 INDUCED MAGNETIC FIELDS 849

Induced Magnetic Fields 849

32-3 DISPLACEMENT CURRENT 852

Displacement Current 853

Maxwell's Equations 855

32-4 MAGNETS 856

Magnets 856

32-5 MAGNETISM AND ELECTRONS 858

Magnetism and Electrons 859
Magnetic Materials 862

32-6 DIAMAGNETISM 863 NEMAR INFINITION A NAMED AND PROPERTY BASE

Diamagnetism 863

32-7 PARAMAGNETISM 865

Paramagnetism 865

32-8 FERROMAGNETISM 867

Ferromagnetism 867

REVIEW & SUMMARY 870 PROBLEMS 871

33 Electromagnetic Waves 876

33-1 ELECTROMAGNETIC WAVES 876

What Is Physics? 876

Maxwell's Rainbow 877

The Traveling Electromagnetic Wave, Qualitatively 878

The Traveling Electromagnetic Wave, Quantitatively 881

33-2 ENERGY TRANSPORT AND THE POYNTING VECTOR 884

Energy Transport and the Poynting Vector 885

33-3 RADIATION PRESSURE 887

Radiation Pressure 887

33-4 POLARIZATION 889 To Mark required and the encound a supplement

Polarization 889 September 2011 1889 Good VISING A WILLIAM

33-5 REFLECTION AND REFRACTION 894

Reflection and Refraction 895

33-6 TOTAL INTERNAL REFLECTION 900

Total Internal Reflection 900

33-7 POLARIZATION BY REFLECTION 901

Polarization by Reflection 902

REVIEW & SUMMARY 903 PROBLEMS 904

34 Images 910

34-1 IMAGES AND PLANE MIRRORS 910 Midmed when he yet not need to

What Is Physics? 910

Two Types of Image 910

Plane Mirrors 912

34-2 SPHERICAL MIRRORS 914

Spherical Mirrors 915

Images from Spherical Mirrors 916 (1974) 1884 1884 1884 1884 1884

34-3 SPHERICAL REFRACTING SURFACES 920

Spherical Refracting Surfaces 920

34-4 THIN LENSES 923

Thin Lenses 923

34-5 OPTICAL INSTRUMENTS 930

Optical Instruments 930

34-6 THREE PROOFS 933

REVIEW & SUMMARY 936 PROBLEMS 937

35 Interference 943

35-1 LIGHT AS A WAVE 943

What Is Physics? 943

Light as a Wave 944

35-2 YOUNG'S INTERFERENCE EXPERIMENT 949 AND AND SHEET STREET STREET

Diffraction 949

Young's Interference Experiment 950

35-3 INTERFERENCE AND DOUBLE-SLIT INTENSITY 955 THYRIADS AND A-VE

Coherence 955

Intensity in Double-Slit Interference 956

35-4 INTERFERENCE FROM THIN FILMS 959

Interference from Thin Films 960

35-5 MICHELSON'S INTERFEROMETER 966

Michelson's Interferometer 967

REVIEW & SUMMARY 968 PROBLEMS 968

OCO, SIRE IS AND AND A

36 Diffraction 975

36-1 SINGLE-SLIT DIFFRACTION 975

What Is Physics? 975

Diffraction and the Wave Theory of Light 975

Diffraction by a Single Slit: Locating the Minima 977

14.5 新门加松川 诗 湘州 12.22

36-2 INTENSITY IN SINGLE-SLIT DIFFRACTION 980

Intensity in Single-Slit Diffraction 980

Intensity in Single-Slit Diffraction, Quantitatively 980

36-3 DIFFRACTION BY A CIRCULAR APERTURE 984

Diffraction by a Circular Aperture 985 2 28000000 1845 1846 1846 1846

36-4 DIFFRACTION BY A DOUBLE SLIT 988

Diffraction by a Double Slit 989

36-5 DIFFRACTION GRATINGS 992

Diffraction Gratings 992

36-6 GRATINGS: DISPERSION AND RESOLVING POWER 995

Gratings: Dispersion and Resolving Power 995

36-7 X-RAY DIFFRACTION 998

X-Ray Diffraction 998

REVIEW & SUMMARY 1001 PROBLEMS 1001

37 Relativity 1008

37-1 SIMULTANEITY AND TIME DILATION 1008

What Is Physics? 1008

The Postulates 1009

Measuring an Event 1010

The Relativity of Simultaneity 1012

The Relativity of Time 1013

37-2 THE RELATIVITY OF LENGTH 1017

The Relativity of Length 1018

37-3 THE LORENTZ TRANSFORMATION 1021 COMPANY SHEET SHEET SHEET

The Lorentz Transformation 1021

Some Consequences of the Lorentz Equations 1023

15-4 INTERPORT THE PARTY AND PROPERTY A-25

37-4 THE RELATIVITY OF VELOCITIES 1025 MINISTRA SAME PROPERTY AND ASSESSMENT OF VELOCITIES 1025

The Relativity of Velocities 1025

37-5 DOPPLER EFFECT FOR LIGHT 1026

Doppler Effect for Light 1027

37-6 MOMENTUM AND ENERGY 1029

A New Look at Momentum 1030 and fill all the state of the

A New Look at Energy 1030

REVIEW & SUMMARY 1035 PROBLEMS 1036 AND VIRGINIA REGISTER

38 Photons and Matter Waves 1041

38-1 THE PHOTON, THE QUANTUM OF LIGHT 1041

What is Physics? 1041

The Photon, the Quantum of Light 1042

38-2 THE PHOTOELECTRIC EFFECT 1043

The Photoelectric Effect 1044

38-3 PHOTONS, MOMENTUM, COMPTON SCATTERING, LIGHT

Maria de Sultan e-de

INTERFERENCE 1046 TAS 2013 MILESAN AND THE VALUE A-52

Photons Have Momentum 1047

Light as a Probability Wave 1050

38-4 THE BIRTH OF QUANTUM PHYSICS 1052

The Birth of Quantum Physics 1053

38-5 ELECTRONS AND MATTER WAVES 1054

Electrons and Matter Waves 1055

38-6 SCHRÖDINGER'S EQUATION 1058

Schrödinger's Equation 1058

38-7 HEISENBERG'S UNCERTAINTY PRINCIPLE 1060

Heisenberg's Uncertainty Principle 1061

38-8 REFLECTION FROM A POTENTIAL STEP 1062

Reflection from a Potential Step 1062

38-9 TUNNELING THROUGH A POTENTIAL BARRIER 1064

Tunneling Through a Potential Barrier 1064

REVIEW & SUMMARY 1067 PROBLEMS 1068

39 More About Matter Waves 1072

39-1 ENERGIES OF A TRAPPED ELECTRON 1072

What Is Physics? 1072

String Waves and Matter Waves 1073

Energies of a Trapped Electron 1073

39-2 WAVE FUNCTIONS OF A TRAPPED ELECTRON 1077

Wave Functions of a Trapped Electron 1078

39-3 AN ELECTRON IN A FINITE WELL 1081

An Electron in a Finite Well 1081

39-4 TWO- AND THREE-DIMENSIONAL ELECTRON TRAPS 1083

More Electron Traps 1083

Two- and Three-Dimensional Electron Traps 1086

39-5 THE HYDROGEN ATOM 1087

The Hydrogen Atom is an Electron Trap 1088

The Bohr Model of Hydrogen, a Lucky Break 1089

Schrödinger's Equation and the Hydrogen Atom 1091

REVIEW & SUMMARY 1099 PROBLEMS 1099

40 All About Atoms 1103

40-1 PROPERTIES OF ATOMS 1103

What is Physics? 1104

Some Properties of Atoms 1104

Angular Momentum, Magnetic Dipole Moments 1106

40-2 THE STERN-GERLACH EXPERIMENT 1110

The Stern-Gerlach Experiment 1110

40-3 MAGNETIC RESONANCE 1113

Magnetic Resonance 1113

40-4 EXCLUSION PRINCIPLE AND MULTIPLE ELECTRONS IN A TRAP 1114

The Pauli Exclusion Principle 1114

Multiple Electrons in Rectangular Traps 1115

40-5 BUILDING THE PERIODIC TABLE 1118

Building the Periodic Table 1118

40-6 X RAYS AND THE ORDERING OF THE ELEMENTS 1120

X Rays and the Ordering of the Elements 1121

40-7 LASERS 1124

Lasers and Laser Light 1125

How Lasers Work 1126

REVIEW & SUMMARY 1129 PROBLEMS 1130

41 Conduction of Electricity in Solids 1134

41-1 THE ELECTRICAL PROPERTIES OF METALS 1134

What Is Physics? 1135

The Electrical Properties of Solids 1135

Energy Levels in a Crystalline Solid 1136

Insulators 1136

Metals 1137

41-2 SEMICONDUCTORS AND DOPING 1143

Semiconductors 1144

Doped Semiconductors 1145

41-3 THE p-n JUNCTION AND THE TRANSISTOR 1147

The p-n Junction 1148

The Junction Rectifier 1149

The Light-Emitting Diode (LED) 1150

The Transistor 1152

REVIEW & SUMMARY 1153 PROBLEMS 1154

42 Nuclear Physics 1158

42-1 DISCOVERING THE NUCLEUS 1158

What Is Physics? 1158

Discovering the Nucleus 1158

42-2 SOME NUCLEAR PROPERTIES 1161

Some Nuclear Properties 1162

42-3 RADIOACTIVE DECAY 1168

Radioactive Decay 1168

42-4 ALPHA DEGAY 1171

Alpha Decay 1171

42-5 BETA DECAY 1174

Beta Decay 1174

42-6 RADIOACTIVE DATING 1177

Radioactive Dating 1177

42-7 MEASURING RADIATION DOSAGE 1178

Measuring Radiation Dosage 1178

42-8 NUCLEAR MODELS 1179

Nuclear Models 1179

REVIEW & SUMMARY 1182 PROBLEMS 1183

43 Energy from the Nucleus 1189

43-1 NUCLEAR FISSION 1189

What Is Physics? 1189

Nuclear Fission: The Basic Process 1190

A Model for Nuclear Fission 1192

43-2 THE NUCLEAR REACTOR 1196

The Nuclear Reactor 1196

43-3 A NATURAL NUCLEAR REACTOR 1200

A Natural Nuclear Reactor 1200

43-4 THERMONUCLEAR FUSION: THE BASIC PROCESS 1202

Thermonuclear Fusion: The Basic Process 1202

43-5 THERMONUCLEAR FUSION IN THE SUN AND OTHER STARS 1204

Thermonuclear Fusion in the Sun and Other Stars 1204

43-6 CONTROLLED THERMONUCLEAR FUSION 1206

Controlled Thermonuclear Fusion 1206

REVIEW & SUMMARY 1209 PROBLEMS 1209

44 Quarks, Leptons, and the Big Bang 1214

44-1 GENERAL PROPERTIES OF ELEMENTARY PARTICLES 1214

What Is Physics? 1214

Particles, Particles, Particles 1215

An Interlude 1219

44-2 LEPTONS, HADRONS, AND STRANGENESS 1223

The Leptons 1223

The Hadrons 1225 Still Another Conservation Law 1226 The Eightfold Way 1227

44-3 QUARKS AND MESSENGER PARTICLES 1229

The Quark Model 1229

Basic Forces and Messenger Particles 1232

44-4 COSMOLOGY 1235

A Pause for Reflection 1235 Held Backy - 11 74 The Universe Is Expanding 1236 The Cosmic Background Radiation 1237 Dark Matter 1238 The Big Bang 1238 A Summing Up 1241

BEYER & SUMMARY IN SEE BROOK FROM THE AMERICA WEIGHT

48 Growton to Marines 1789

AS-2 THE RECORD MALERIAN VITOR

ATT THE MENDER FOR THE PARTY WASHE PRODUCED A SOCIETY

easy 2010000 easy Wallant a walling

44-2 LEPTONS NADRONS, AND STRANGEMESS , 2 223

When is Physics? 1214

Parlintes, Particles, Protocles 1215

405 TERRITORISM TURISM BY NOT HELD WARREN 1204

97-9 THE LERENCE TO MAKE THE SHEET SHEET HAS AND THE REALISH MEDISTRANIAN

Tene Commission of the Commiss

THE SHEET PRINTED THE REAL PROPERTY AND THE SHEET AND THE

ALL STREET ROOMS OF THE STREET PARTIES ASSESSED.

BBIT WHICH RALDING 1-61

REVIEW & SUMMARY 1242 PROBLEMS 1242 APPENDICES TO TOST PORT AND THE OR

A The International System of Units (SI) A-1

B Some Fundamental Constants of Physics A-3

STATE POSTPARAM

ADD TEST

REMEMBER 1120 PRINCES 120

HAN TENED OF THE LEFT WE STATE OF THE

oarr (OL) size polici (S)

12 Miles Paper 1106 600

sale without all

THE STREET AND ASSESSED THE SAME OF THE SA

C Some Astronomical Data A-4

D Conversion Factors A-5

E Mathematical Formulas A-9

F Properties of The Elements A-12

G Periodic Table of The Elements A-15

ANSWERS

to Checkpoints and Odd-Numbered Problems AN-1

THE RESIDENCE OF THE LIBERTY OF THE STREET, SAME AND ADDRESS OF THE SAME A

lutioner from a feminine or stalled a state of in material for a

20 Alberta Berger Willer Wilself - Lower in Land to carrage A step to Graffi

The lighter as house there you have being the best

THE SECOND REPORTED BY THE PROPERTY OF THE PRO

Spirit at the the last of the first from the sector of the last of

SETTING THE PARTY SHOWS SHOW THE PROPERTY AND AND SETTINGS.

INDEX 1-1