CONTENTS

O BEFORE CALCULUS 1 1 10 14 16 11 110 14

0.1 Functions 1 orbinut a to sulav egastavA 8.4

ral IN Geometry,

UCONOMETRIC

retric Functions 462

cand Exponential

RICECTUS 450

- 0.2 New Functions from Old 15 and suleval 9.4
- 0.3 Families of Functions 27
- 0.4 Inverse Functions 38

LIMITS AND CONTINUITY 49

- 1.1 Limits (An Intuitive Approach) 49
- 1.2 Computing Limits 62
- 1.3 Limits at Infinity; End Behavior of a Function 71

SCIENCE, AND ENGINEERING HART

Applied Manner and Alie

The Indefinite Integral 331

Resided Incitof Assembas Gold Actions 514

boritsMalnotApilitalias of Integrals 323

Bibli Convergence 618

- 1.4 Limits (Discussed More Rigorously) 81
- 1.5 Continuity 90
- 1.6 Continuity of Trigonometric Functions 101

2 THE DERIVATIVE 110 JANTAGE OF A

- 2.1 Tangent Lines and Rates of Change 110
- 2.2 The Derivative Function 122
- 2.3 Introduction to Techniques of Differentiation 134
- anisheral alargetal bar 2.4 The Product and Quotient Rules 142
 - 2.5 Derivatives of Trigonometric Functions 148
 - 2.6 The Chain Rule 153
 - 2.7 Implicit Differentiation 161
 - 2.8 Related Rates 168
 - 2.9 Local Linear Approximation; Differentials 175

THE DERIVATIVE IN GRAPHING AND APPLICATIONS 187

- 3.1 Analysis of Functions I: Increase, Decrease, and Concavity 187
- 3.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials 197
- 3.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents 207
- 3.4 Absolute Maxima and Minima 216

William S. Printeling

3.5	Applied	Maximum	and	Minimum	Problems	224
	1 ippiicu	LASCHAULT LEGILLE	WII L	TAILLIE FOREST	LIODICITIS	See Am

- 3.6 Rectilinear Motion 238
- 3.7 Newton's Method 246
- 3.8 Rolle's Theorem; Mean-Value Theorem 252

4 INTEGRATION 265

- 4.1 An Overview of the Area Problem 265
- 4.2 The Indefinite Integral 271
- 4.3 Integration by Substitution 281
- 4.4 The Definition of Area as a Limit; Sigma Notation 287
- 4.5 The Definite Integral 300
- 4.6 The Fundamental Theorem of Calculus 309
- 4.7 Rectilinear Motion Revisited Using Integration 322
- 4.8 Average Value of a Function and its Applications 332
- 4.9 Evaluating Definite Integrals by Substitution 337

APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY, SCIENCE, AND ENGINEERING 347

- 5.1 Area Between Two Curves 347
- 5.2 Volumes by Slicing; Disks and Washers 355
- 5.3 Volumes by Cylindrical Shells 365
- 5.4 Length of a Plane Curve 371
- 5.5 Area of a Surface of Revolution 377
- 5.6 Work 382
- 5.7 Moments, Centers of Gravity, and Centroids 391
- 5.8 Fluid Pressure and Force 400

6 EXPONENTIAL, LOGARITHMIC, AND INVERSE TRIGONOMETRIC FUNCTIONS 409

- 6.1 Exponential and Logarithmic Functions 409
- 6.2 Derivatives and Integrals Involving Logarithmic Functions 420
- 6.3 Derivatives of Inverse Functions; Derivatives and Integrals Involving Exponential Functions 427
- 6.4 Graphs and Applications Involving Logarithmic and Exponential Functions 434
- 6.5 L'Hôpital's Rule; Indeterminate Forms 441
- 6.6 Logarithmic and Other Functions Defined by Integrals 450
- 6.7 Derivatives and Integrals Involving Inverse Trigonometric Functions 462
- 6.8 Hyperbolic Functions and Hanging Cables 472

PRINCIPLES OF INTEGRAL EVALUATION 488

- 7.1 An Overview of Integration Methods 488
- 7.2 Integration by Parts 491

TEI VIIV

usps, and Vertical

THE DERIVATIVE IN CICATIFING AND APPLICATIONS

7.3 Integrating Trigonometric Functions 500

- 7.4 Trigonometric Substitutions 508
- 7.5 Integrating Rational Functions by Partial Fractions 514
- 7.6 Using Computer Algebra Systems and Tables of Integrals 523
- 7.7 Numerical Integration; Simpson's Rule 533
- 7.8 Improper Integrals 547

8 MATHEMATICAL MODELING WITH DIFFERENTIAL EQUATIONS 561

- 8.1 Modeling with Differential Equations 561
- 8.2 Separation of Variables 568
- 8.3 Slope Fields; Euler's Method 579
- 8.4 First-Order Differential Equations and Applications 586

PARTIAL DERIVATIVES 906

9 INFINITE SERIES 596

- 9.1 Sequences 596 Minutes 3 bas almid
- 9.2 Monotone Sequences 607
- 9.3 Infinite Series 614
- 9.4 Convergence Tests 623 19 maril on 1
- 9.5 The Comparison, Ratio, and Root Tests 631
- 9.6 Alternating Series; Absolute and Conditional Convergence 638
- 9.7 Maclaurin and Taylor Polynomials 648
- 9.8 Maclaurin and Taylor Series; Power Series 659
- 9.9 Convergence of Taylor Series 668
- 9.10 Differentiating and Integrating Power Series; Modeling with Taylor Series 678

10 PARAMETRIC AND POLAR CURVES; CONIC SECTIONS 692

- 10.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves 692
- SAGE ASSEMBLE 10.2 Polar Coordinates 705 ASSEMBLE OF A DE LA LACE (CALLER CALLE)
 - 10.3 Tangent Lines, Arc Length, and Area for Polar Curves 719
 - 10.4 Conic Sections 730
 - 10.5 Rotation of Axes; Second-Degree Equations 748
 - 10.6 Conic Sections in Polar Coordinates 754

11 THREE-DIMENSIONAL SPACE; VECTORS 767

- 11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces 767
 - 11.2 Vectors 773 carf mercent a neer 2 121
 - 11.3 Dot Product; Projections 785
 - 11.4 Cross Product 795 2 to anotholigg A & C1
 - 11.5 Parametric Equations of Lines 805
 - 11.6 Planes in 3-Space 813 109 dl 'audota 8 E1

		11.7	Quadric Surfaces 821		
	ara ano	11.8	Cylindrical and Spherical Coordinates	832	
525	of integrals	addel	Using Computer Migative Systems rand	3.5	

12 VECTOR-VALUED FUNCTIONS 841

- 12.1 Introduction to Vector-Valued Functions 841
- 12.2 Calculus of Vector-Valued Functions 848
- 12.3 Change of Parameter; Arc Length 858
 - 12.4 Unit Tangent, Normal, and Binormal Vectors 868
 - 12.5 Curvature 873
 - 12.6 Motion Along a Curve 882
 - 12.7 Kepler's Laws of Planetary Motion 895

13 PARTIAL DERIVATIVES 906

- 13.1 Functions of Two or More Variables 906
- 13.2 Limits and Continuity 917
- 13.3 Partial Derivatives 927
- 13.4 Differentiability, Differentials, and Local Linearity 940
- 13.5 The Chain Rule 949
- 13.6 Directional Derivatives and Gradients 960
- 13.7 Tangent Planes and Normal Vectors 971
- 13.8 Maxima and Minima of Functions of Two Variables 977

9.9 Convergence of Taylo

13.9 Lagrange Multipliers 989

14 MULTIPLE INTEGRALS 1000

- 14.1 Double Integrals 1000
- 14.2 Double Integrals over Nonrectangular Regions 1009
- 14.3 Double Integrals in Polar Coordinates 1018
- 14.4 Surface Area; Parametric Surfaces 1026
- 14.5 Triple Integrals 1039
- 14.6 Triple Integrals in Cylindrical and Spherical Coordinates 1048
- 14.7 Change of Variables in Multiple Integrals; Jacobians 1058
- 14.8 Centers of Gravity Using Multiple Integrals 1071

15 TOPICS IN VECTOR CALCULUS 1084

- 15.1 Vector Fields 1084
- 15.2 Line Integrals 1094
- 15.3 Independence of Path; Conservative Vector Fields 1111
 - 15.4 Green's Theorem 1122
 - 15.5 Surface Integrals 1130
 - 15.6 Applications of Surface Integrals; Flux 1138
 - 15.7 The Divergence Theorem 1148
 - 15.8 Stokes' Theorem 1158

APPENDICES

- A GRAPHING FUNCTIONS USING CALCULATORS AND COMPUTER ALGEBRA SYSTEMS A1
- TRIGONOMETRY REVIEW A13
- ad girlanoitaler Langers bring a lone C SOLVING POLYNOMIAL EQUATIONS A27
 - D SELECTED PROOFS A34

ANSWERS TO ODD-NUMBERED EXERCISES 1-1 X3QNI ere Newton. This saturded led to

ion saw how these two problem

WEB APPENDICES (online only)

Available for download at www.wiley.com/go/global/anton

- **REAL NUMBERS, INTERVALS, AND INEQUALITIES**
- ABSOLUTE VALUE
- COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS
- DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
- EARLY PARAMETRIC EQUATIONS OPTION
- **MATHEMATICAL MODELS**
- THE DISCRIMINANT
- SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL **EQUATIONS**

WEB PROJECTS: Expanding the Calculus Horizon (online only)

Available for download at www.wiley.com/go/global/anton

BLAMMO THE HUMAN CANNONBALL

COMET COLLISION

HURRICANE MODELING

ITERATION AND DYNAMICAL SYSTEMS

RAILROAD DESIGN

ROBOTICS