CONTENTS

James Monroe Gere ix Preface to the SI Edition xi Symbols xviii Greek Alphabet xx

1. TENSION, COMPRESSION, AND SHEAR 2

- 1.1 Introduction to Mechanics of Materials 4
- **1.2** Statics Review 6
- 1.3 Normal Stress and Strain 27
- 1.4 Mechanical Properties of Materials 37
- 1.5 Elasticity, Plasticity, and Creep 45
- 1.6 Linear Elasticity, Hooke's Law, and Poisson's Ratio 52
- 1.7 Shear Stress and Strain 57
- 1.8 Allowable Stresses and Allowable Loads 68
- 1.9 Design for Axial Loads and Direct Shear 74Chapter Summary & Review 80Problems 83

2. AXIALLY LOADED MEMBERS 122

- 2.1 Introduction 124
- 2.2 Changes in Lengths of Axially Loaded Members 124
- 2.3 Changes in Lengths Under Nonuniform Conditions 134
- **2.4** Statically Indeterminate Structures 142
- 2.5 Thermal Effects, Misfits, and Prestrains 153
- **2.6** Stresses on Inclined Sections 168
- 2.7 Strain Energy 180
- *2.8 Impact Loading 191
- *2.9 Repeated Loading and Fatigue 199
- *2.10 Stress Concentrations 201
- *2.11 Nonlinear Behavior 209
- *2.12 Elastoplastic Analysis 214
 Chapter Summary & Review 220
 Problems 222

3. TORSION 262

- 3.1 Introduction 264
- **3.2** Torsional Deformations of a Circular Bar 265
- 3.3 Circular Bars of Linearly Elastic Materials 268
- 3.4 Nonuniform Torsion 280
- 3.5 Stresses and Strains in Pure Shear 291
- **3.6** Relationship Between Moduli of Elasticity *E* and *G* 298
- **3.7** Transmission of Power by Circular Shafts 299
- 3.8 Statically Indeterminate Torsional Members 304
- **3.9** Strain Energy in Torsion and Pure Shear 308
- 3.10 Torsion of Noncircular Prismatic Shafts 315
- 3.11 Thin-Walled Tubes 324
- *3.12 Stress Concentrations in Torsion 332 Chapter Summary & Review 336 Problems 338

4. SHEAR FORCES AND BENDING MOMENTS 364

- 4.1 Introduction 366
- **4.2** Types of Beams, Loads, and Reactions 366
- **4.3** Shear Forces and Bending Moments 373
- **4.4** Relationships Between Loads, Shear Forces, and Bending Moments 383
- 4.5 Shear-Force and Bending-Moment Diagrams 387Chapter Summary & Review 400Problems 402

5. STRESSES IN BEAMS (BASIC TOPICS) 416

- **5.1** Introduction 418
- **5.2** Pure Bending and Nonuniform Bending 418
- **5.3** Curvature of a Beam 419

^{*}Specialized and/or advanced topics

İ	Contents	
5.4	Longitudinal Strains in Beams 421	7.7 Pla
5.5	Normal Stresses in Beams (Linearly Elastic Materials) 426	Cha Pro
5.6	Design of Beams for Bending Stresses 440	8. APPLICA
5.7	Nonprismatic Beams 449	AND COM
5.8	Shear Stresses in Beams of Rectangular Cross Section 453	8.1 Int
5.9	Shear Stresses in Beams of Circular Cross Section 462	8.2 Spl8.3 Cyl
5.10	Shear Stresses in the Webs of Beams with Flanges 465	8.4 Ma8.5 Co
5.11	Built-Up Beams and Shear Flow 472	Cha
5.12	Beams with Axial Loads 476	Pro
5.13	Stress Concentrations in Bending 482	9. DEFLECT
	Chapter Summary & Review 486	9.1 Int
	Problems 490	9.2 Dif Cu
PIC	ESSES IN BEAMS (ADVANCED S) 524	9.3 Der Ber
6.1	Introduction 526	9.4 De
	Composite Beams 526	She
	Transformed-Section Method 535	9.5 Me
6.4	Doubly Symmetric Beams with Inclined Loads 544	9.6 Mc 9.7 No

6. TO

- **6.5** Bending of Unsymmetric Beams 551
- **6.6** The Shear-Center Concept 559
- 6.7 Shear Stresses in Beams of Thin-Walled Open Cross Sections 561
- **6.8** Shear Stresses in Wide-Flange Beams
- 6.9 Shear Centers of Thin-Walled Open Sections 568
- *6.10 Elastoplastic Bending 576 Chapter Summary & Review 584 Problems 587

7. ANALYSIS OF STRESS AND STRAIN 608

- **7.1** Introduction 610
- 7.2 Plane Stress 610
- 7.3 Principal Stresses and Maximum Shear Stresses 618
- 7.4 Mohr's Circle for Plane Stress 627
- 7.5 Hooke's Law for Plane Stress 643
- **7.6** Triaxial Stress 649

7.7	Plane Strai	n 653	
	Chapter Summary & Review		
	Problems	672	

ATIONS OF PLANE STRESS E VESSELS, BEAMS, BINED LOADINGS) 692

- roduction 694
- herical Pressure Vessels 694
- lindrical Pressure Vessels 700
- ximum Stresses in Beams 707
- mbined Loadings 716 apter Summary & Review 734 oblems 736

TIONS OF BEAMS 754

- roduction 756
- fferential Equations of the Deflection rve 756
- flections by Integration of the nding-Moment Equation 761
- flections by Integration of the ear-Force and Load Equations
- ethod of Superposition 778
- oment-Area Method 786
- onprismatic Beams 795
- 9.8 Strain Energy of Bending 800
- *9.9 Castigliano's Theorem 805
- *9.10 Deflections Produced by Impact 817
- *9.11 Temperature Effects 819 Chapter Summary & Review 824 Problems 826

10. STATICALLY INDETERMINATE BEAMS

- 10.1 Introduction 850
- 10.2 Types of Statically Indeterminate Beams 850
- 10.3 Analysis by the Differential Equations of the Deflection Curve 853
- **10.4** Method of Superposition 860
- *10.5 Temperature Effects 873
- *10.6 Longitudinal Displacements at the Ends of a Beam 881 Chapter Summary & Review

Problems 886

11. COLUMNS 900

- 11.1 Introduction 902
- **11.2** Buckling and Stability 902
- 11.3 Columns with Pinned Ends 910
- **11.4** Columns with Other Support Conditions 921
- 11.5 Columns with Eccentric Axial Loads 931
- 11.6 The Secant Formula for Columns 936
- 11.7 Elastic and Inelastic Column Behavior 941
- 11.8 Inelastic Buckling 943
 Chapter Summary & Review 950
 Problems 952

12. REVIEW OF CENTROIDS AND MOMENTS OF INERTIA 968

- **12.1** Introduction 970
- **12.2** Centroids of Plane Areas 970
- 12.3 Centroids of Composite Areas 973
- 12.4 Moments of Inertia of Plane Areas 976
- **12.5** Parallel-Axis Theorem for Moments of Inertia 979
- 12.6 Polar Moments of Inertia 983
- **12.7** Products of Inertia 985
- 12.8 Rotation of Axes 988
- 12.9 Principal Axes and Principal Moments of Inertia 990

Problems 994

REFERENCES AND HISTORICAL NOTES 1001

APPENDIX A: SYSTEMS OF UNITS AND CONVERSION FACTORS 1009

APPENDIX B: PROBLEM SOLVING 1019

APPENDIX C: MATHEMATICAL FORMULAS 1025

APPENDIX D: PROPERTIES OF PLANE

AREAS 1031

APPENDIX E: PROPERTIES OF STRUCTURAL-STEEL SHAPES 1037

APPENDIX F: PROPERTIES OF STRUCTURAL

TIMBER 1043

APPENDIX G: DEFLECTIONS AND SLOPES

OF BEAMS 1045

APPENDIX H: PROPERTIES OF

MATERIALS 1051

ANSWERS TO PROBLEMS 1057

NAME INDEX 1091

SUBJECT INDEX 1092