## Contents 247 Rapid-hardening loutand centent 121 Low heat Portiand conerns Special very rapid hardening Fordand consents assembled in Wasses of the | | silica fume | |---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Preface to the Fifth Edition | aralli- | | Preface | Nuiser cements | | Acknowledgements | Which cement to use | | | Leh-alumina cement | | Portland cement | Manufacture | | Historical note | Composition and hydration | | Manufacture of Postland coment | Resistance to chemical attack | | Chemical composition of Portland | Physical properties of high-align | | Understand of compation of Portland | cement | | Hydration of cement | defractory properties of high-alm | | Calcium Sincate invarates | | | Satting | d the action of gypsum | | Setting False set | Properties of argueous | | | AND A THE SHEET OF THE | | Fineness of cement | Seneral classification of augments | | Structure of hydrated cement | Classification of natural argicula | | volume of products of flydration | sampling | | Capillary pores | Particle shape and texture | | Gel pores | Bond of aggregate and allides | | Mechanical strength of cement gel | The second secon | | Water held in hydrated cement pass | e contract of the | | Heat of hydration of cement | | | Influence of the compound compos | ition on properties of cement | | Effects of alkalis | Ome nemeral | | Effects of glass in clinker | Percent and absorption of aggree | | Tests on properties of cement | Moisture content of aggregate | | Consistency of standard paste | Buiking of fine aggregate | | Setting time | Deleterious substances in aggrega | | Soundness | Organic impunities | | Strength of cement | Clay and other fine material. | | References | Salt contamination | | | Unsound particles | | Cementitious materials of different t | ypes of aggregate semblance | | | Alkali-siltea reaction | | Categorization of cementitious mate | | | Ordinary Partland assessed | Alkali carbonate reaction | | Ordinary Portland cement | Themsel monerage of accrease. | 15 72 | | Rapid-hardening Portland cement | | 71 | |---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | | Special very rapid-hardening Portland | cements | 72 | | | Low heat Portland cement | | 75 | | | Sulfate-resisting cement | | 76 | | 81 | White cement and pigments | | 77 | | | Portland blastfurnace cement | | 79 | | | Supersulfated cement | | 81 | | | Pozzolanas | | 83 | | | Fly ash | THE RANGE IN CO. | 84 | | | Pozzolanic cements | | 86 | | | Silica fume | | 86 | | 7X | Fillers | Preface to the Fifth Edition | 88 | | GYX. | Other cements | | 88 | | ZX | Which cement to use | Acknowledgewentre | 90 | | | High-alumina cement | | 91 | | 1 | Manufacture | Portland censors | 91 | | | Composition and hydration | | 92 | | | Resistance to chemical attack | Harmon note | 92 | | 2 | Physical properties of high-alumina | cement | 93 | | | Conversion of high-alumina cement | THE RESIDENCE HERED RESIDENCE | 95 | | Ef | Refractory properties of high-alumina | cement Insures to nontribyli | 102 | | 14 | Deferences | CONTRACTOR SINGER MINISTER | 103 | | 11 | musque lo notion sit ban y | Tricultium aleminate balter | 103 | | -ei | | 30000 | 400 | | 3 | Properties of aggregate | False set | 108 | | All San | General classification of aggregates | inches of capter | 108 | | 25 | Classification of natural aggregates | Structure of hydrated cement | 109 | | 200 | Sampling Sampling | Volunters promotes with video | 111 | | I. I.E. | Particle shape and texture | Capillary pores | 112 | | 70 | Bond of aggregate | A STATE OF S | 118 | | | Company of the Compan | Desperato di propie da Labora da Gili. | 119 | | e Men | Other mechanical properties of aggreg | rate | 123 | | | Specific gravity | lapreso de cente derá boda da | 125 | | 14 | Bulk density | led bus opens the loans with | 127 | | 94 | Porosity and absorption of aggregate | Effects of alkalis | 128 | | | Moisture content of aggregate | Effects of plass in ellipses | 132 | | 181 | Bulking of fine aggregate | Tests on properties of centent | 134 | | 67 | | Consistency of standard pas | 136 | | 129 | Deleterious substances in aggregate | Setting time | 136 | | 15 | Organic impurities | Soundness | 137 | | AVE RIN | Clay and other fine material | per sub-categorisado depositivo. | | | and the | Salt contamination | knofikis obliga obolikacih siki je na | 139 | | | Unsound particles | | 140 | | Sà | Soundness of aggregate | Conomittons materials of differ | 142 | | P.A. | Alkali–silica reaction | manufacture and a first marks and a second of the | 144 | | 10 | Tests for aggregate reactivity | ( alegorization of comensions) | 145 | | 100 | Alkali-carbonate reaction | circum transliki | 147 | | 60 | Thermal properties of aggregate | Ordinary Persiand cement | 148 | | | | Contents | VII | |-------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 221 | Sieve analysis | arance) Requirements for pamped c | 149 | | 225 | CANAL TO THE PROPERTY AND A PROPERTY. | Pumping beinweight aggreg | 154 | | 225 | Fineness modulus | Shoterate | 154 | | 228 | Grading requirements | Linderwater conserve | 155 | | 800 | Practical gradings | Preplaced aggreeate concrete | 163 | | ()FX | Grading of fine and coarse aggregates | | 166 | | 230 | Oversize and undersize | Internal vibrators | | | 188 | Gap-graded aggregate | atorandir internal c | 170 | | CES | | | 171 | | 233 | Maximum aggregate size | le stermanne tables man del control of | 174 | | 285 | Use of 'plums' | CHick vibrators | 175 | | | Handling of aggregate | noitedivall | 175 | | 234 | Special aggregates | Vacuum-dassatered concrete | 176 | | 136 | Recycled concrete aggregate | Pomeable formwork | 176 | | 236 | References | Analysis of fresh concrete | 178 | | 36.4 | Turing of congress Station (gette | ; Self-compactura (self-corpsolid | | | 4 | Fresh concrete | References | 183 | | 245 | Quality of mixing water | A dinextence | 183 | | | Density of fresh concrete | | 186 | | CF. | Definition of workability | Renefits of admixtures | 186 | | 245 | The need for sufficient workability | Types of admixtures | | | 247 | | Accelerating admixitures | 187 | | 1833 | Factors affecting workability | Retaiding admixtures | 188 | | 100 | Measurement of workability | Water-reducing admixtures | 191 | | | Slump test | Superplusie izers | 191 | | 8217 | Compacting factor test | Nature of superplushersers | 193 | | 258 | ASTM flow test | Effects of superplasticizers | 194 | | 186 | Remoulding test | Dosage of superplasticizers | 195 | | 268 | Vebe test | f Loss of workability | 196 | | 263 | Elaw table test | | 197 | | 101 | Ball penetration test and compactab | ility test | 197 | | 3265 | Nasser's K-tester | postativisely, Inline 2 | 199 | | SHE | Two-point test | The state of s | 199 | | 9957 | Comparison of tests | Wind to the state of the A | 200 | | Tag | Stiffening time of concrete | STABLES ON SALED AND SHIPS | 203 | | 267 | Effect of time and temperature on wor | kability | 203 | | 1.137 | Segregation | TO CONTRACT OF THE PROPERTY | 205 | | Lene | Bleeding | | 207 | | 175 | The mixing of concrete | | 209 | | IVE | Concrete mixers | | 209 | | 2000 | Uniformity of mixing | The sale is a second of the sale. | 211 | | | Mixing time | | 213 | | 279 | Hand mixing | | | | 085 | Hand mixing | e racoso;<br>compacia | 216 | | 286 | Ready-mixed concrete | | 216 | | 585 | Retempering diagnosts and plagatage and | | 217 | | 195 | Pumped concrete Alaboria and Office | | 219 | | 1.67 | | | 219 | | | Use of pumping | | 220 | | 1 | Requirements for pumped concrete | Sieve analysis | |---|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ŀ | Pumping lightweight aggregate concr | ete da enves en est | | | Shotcrete Shotches and Shotches | Function assembly | | | Underwater concrete | Cinding requirements | | | Preplaced aggregate concrete | Practical gradings | | | Vibration of concrete | Grading of fine and coarse ag | | | Internal vibrators | Oversize and undersize | | | External vibrators | Gap-graded aggregate | | | Vibrating tables | Maximum aggregate size | | | Other vibrators | Use of 'phons | | | Revibration | Handling of aggregate | | | Vacuum-dewatered concrete | Special aggregates | | | Permeable formwork | Recycled concrete aggregate | | | Analysis of fresh concrete | References | | | Self-compacting (self-consolidating) con | ncrete | | | References | Fresh concrete | | | | TENTINEOU MEDIT | | | Admixtures | Quality of mixing water | | | Benefits of admixtures | Density of fresh concrete sales | | | Types of admixtures | Definition of workability | | | Accelerating admixtures | The need for sufficient works | | | Retarding admixtures | Factors affecting workability | | | Water-reducing admixtures | Measurement of workability | | | Superplasticizers | Shing test | | | Nature of superplasticizers | Compacing factor test | | | Effects of superplasticizers | ASTM flow lest | | | Dosage of superplasticizers | Renoulding test | | | Loss of workability | Vebe test | | | | Flow (abjetest | | | Superplasticizer—cement compatibilit<br>Use of superplasticizers | Ball penetration test and of | | | | Vasser's K-tester | | | Special admixtures | The state of s | | | Waterproofing admixtures | A STATE OF THE STA | | | Anti-bacterial and similar admixture | Stiffenine time of concrete | | | Remarks about the use of admixtures | Effect of time and temperature | | | References | Segregation | | | | Bleeding | | | Strength of concrete | The mixing of concrete | | | Water/cement ratio | Concrete mixers | | | Effective water in the mix | | | | Gel/space ratio | Uniformity of mixing | | | | Mixing time | | | | grixim busH | | | Cement compacts | Ready-mixed concrete | | | Influence of properties of coarse aggreg | | | | Influence of aggregate/cement ratio on | | | | Nature of strength of concrete | Concrete pumps | | | | | | 14 | Strength in tension | Elasticity, surinkage, and ore | 291 | |-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----| | | Cracking and failure in compression | | 293 | | Hb. | Failure under multiaxial stress | Expression for arress area | 295 | | 14 | Microcracking who were the state of stat | Expressions for confulncial | 300 | | 0.5 | Aggregate-cement paste interface | | 302 | | | Effect of age on strength of concrete | | 304 | | 42 | Maturity of concrete | | 306 | | 25 | Relation between compressive and tensi | | 310 | | 43 | Bond between concrete and reinforceme | | 313 | | Ch | References | Divine shrinkage | 313 | | 25 | Though die horen of solitate utland | | | | 7 | | indees influencing shrinkay | 320 | | 1 | | Influence of cutting and sta | 320 | | NE E | Curing of concrete | Prediction of shrukage | 320 | | NE L | Methods of curing | Daterential shrinkage | 325 | | | Tests on curing compounds | | 328 | | 44 | Length of curing | Shrinkage-undaced stacking | 329 | | N. | | Moisture movement | 330 | | sh/L | Autogenous healing | Carbonanon shrinkage | 330 | | 44 | Variability of strength of cement | neg commendation of sauces | 334 | | 44 | Changes in the properties of cement | lypes of expansive coment | 337 | | 44 | Fatigue strength of concrete | | | | 45 | Impact strength | Creep of concrete | 345 | | 7.6 | Electrical properties of concrete | Pactors influencing even | 348 | | | Acoustic properties | | 353 | | 45 | | Influence of properties of o | 355 | | R. | ve humidity specializes resistance | Influence of ambient relati | | | 8 | Temperature effects in concrete | Other influences | 361 | | 460 | A eferciación | Relation between creep and i | 321 | | 471 | Influence of early temperature on streng | | 361 | | | Steam curing at atmospheric pressure | Effects of crosp | 368 | | 111 | High-pressure steam curing (autoclavin | References (g | 372 | | esca. | Other thermal curing methods | 2 - 4 to 1 - 4 to 1 | 375 | | E84 | Thermal properties of concrete | | 376 | | 185 | | Causes of inadequate durabil | 376 | | 484 | Thermal diffusivity | Fransport of iluids in concre- | 379 | | 485 | | Influence of the post system | 379 | | | Coefficient of thermal expansion | <ul> <li>How, diffusion, and sorpti</li> </ul> | 379 | | 486 | Strength of concrete at high temperatur | es and resistance to fire | 386 | | 487 | Modulus of elasticity at high tempera | | 389 | | 487 | Behaviour of concrete in fire | Difficion coefficient | 389 | | 487 | Strength of concrete at very low temper | Diffusion through a sauta | 392 | | 488 | Mass concrete | Absorption | 395 | | 281. | Concreting in hot weather | Surface absorption tests | 399 | | 190 | Concreting in cold weather | Sorptivity | 402 | | 491 | Concreting operations | | 404 | | 495 | References | Permeability testing | 407 | | 9 | Elasticity, shrinkage, and creep | 413 | |------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | EQS | Stress-strain relation and modulus of elasticity with both particles | 413 | | 282 | Expressions for stress-strain curve and lack afford sehous equively | 418 | | (in) | Expressions for modulus of elasticity | 419 | | SUE | Dynamic modulus of elasticity | 421 | | ME | Poisson's ratio standard le digneris no see le Justid | 422 | | OUE | Early volume changes | 424 | | DIE | Autogenous shrinkage 712 alkani bak avissorqmon mawrind autalin H | 426 | | ALE | Swelling transported and relationseries to see state of the second transported to transported to the second transported transported to the second transported | 426 | | EH | Drying shrinkage | 427 | | | Mechanism of shrinkage | 427 | | 326 | Factors influencing shrinkage operational to allege terms I | 430 | | | Influence of curing and storage conditions | 436 | | OLE: | Prediction of shrinkage statement statement of shrinkage | 438 | | 325 | Differential shrinkage group to about the | 439 | | REE | Shrinkage-induced cracking abanograms animo no also I | 442 | | DCE | Moisture movement | 443 | | | Carbonation shrinkage | 444 | | O.L. | Shrinkage compensation by the use of expansive cements | 447 | | 334 | Types of expansive cements | 447 | | 337 | Shrinkage-compensating concrete | 449 | | 245 | Creep of concrete management of the o | 450 | | SHE | Factors influencing creep | 453 | | SEF. | Influence of stress and strength | 455 | | èèE | Influence of properties of cement | 457 | | | Influence of ambient relative humidity | 458 | | 195 | Other influences of state s | 461 | | | Relation between creep and time | 466 | | 100 | Nature of creep on such a figure on strength of concept the so something | 470 | | | Effects of creep attracting anoniquents to gain a mustice | 473 | | 372 | References and administration (Survisionus) annua meets amazarquistida | 475 | | 10 | Durability of concrete | 483 | | | (1) : 10 : 10 : 10 : 10 : 10 : 10 : 10 : | | | are. | Causes of inadequate durability | 483 | | 379 | Transport of fluids in concrete virginities is a virginities of the second se | 484 | | PTE | Influence of the pore system | 485 | | 379 | Flow, diffusion, and sorption notating a language languag | 485 | | 386 | Coefficient of permeability an avoques daid to elegant to diguestic | 486 | | (282 | Modulus of clasticity at high temperatures at the missing | 487 | | 389 | Diffusion coefficient sail at appropriate appropriate and appr | 487 | | SEE. | Diffusion through air and water well was in stranger to stranger to stranger | 487 | | 995 | Absorption State of the Absorp | 488 | | 88E | Surface absorption tests Surface absorption tests | 489 | | SIL | Sorptivity Comments and the second se | 490 | | 和排 | Water permeability of concrete anomatical granter of the state | 491 | | 107 | Permeability testing | 495 | | | Water penetration test | 496 | | HIC | Air and vapour permeability and shriolds to eastmost blodes at | 496 | |------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 571 | Carbonation and should to grabuil | 498 | | 573 | Effects of carbonation moreomes no engines believed to somethal | 499 | | EFP | Rate of carbonation nowarron among the elected to the carbonation | 500 | | 818 | Factors influencing carbonation and the state of stat | 502 | | 378 | Carbonation of concrete containing blended cements | 504 | | 00% | Measurement of carbonation | 505 | | | Further aspects of carbonation | 506 | | | ACID SHACK ON CONCRETE | 507 | | 183 | Sulfate attack on concrete | 509 | | | Thaumasite form of sulfate attack | 510 | | ERE | Mechanisms of attack | 510 | | 682 | Factors mitigating the attack | 512 | | 533 | Tests on sulfate resistance | 514 | | 0/2 | Delayed ettringite formation | 515 | | | Efflorescence galages has assessed to acidimos that to totall a | 515 | | RAR | Effects of sea water on concrete | 516 | | 665 | Salt weathering Resembled noises in the F | 518 | | 502 | Selection of concrete for exposure to sea water | 519 | | 593 | Disruption by alkali-silica reaction | 519 | | 965 | Preventive measures but to have codes to adjusted as a gornigmos | 521 | | 597 | Abrasion of concrete normal and attended to the state of | 523 | | SHE | Tests for abrasion resistance | 523 | | 008 | Factors influencing abrasion resistance | 525 | | SUR | Erosion resistance and noutibrod stateson to dignore no somethal | 525 | | £00 | Cavitation resistance diagnostic no namezone to axis to assistant | 526 | | 605 | Types of cracking stand aligners affected in stockle onto | 527 | | | References and all the strength of strengt | 531 | | 110 | Specimen size and aggregate size are the strength to write the | | | 11 | Effects of freezing and thawing and of chlorides | 539 | | 614 | Use of small cores | 337 | | | Action of frost | 539 | | 810 | Behaviour of coarse aggregate particles another to the moits of | 544 | | | Air entrainment test tobuly a pasignation of the contrainment | 546 | | | Air-void system characteristics to not applied to star to something | 548 | | (0) | Entrained-air requirements | 550 | | 614 | Factors influencing air entrainment and beautiful and the own provide | 552 | | era | Stability of entrained air | 554 | | 020 | Air entrainment by microspheres | 555 | | | Measurement of air content | 556 | | | Tests of resistance of concrete to freezing and thawing | 558 | | CEO. | Further effects of air entrainment | 560 | | €32 | Effects of de-icing agents | 563 | | 635 | Chloride attack and a stranger | 565 | | 636 | Mechanism of chloride-induced corrosion | 565 | | 6.0 | Chlorides in the mix atationou benefits in notheogeneously no steel | 567 | | | Ingress of chlorides | 568 | | 种 | Threshold content of chloride ions | 571 | |------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 498 | Binding of chloride ions | 571 | | 499 | Influence of blended cements on corrosion and another to a position | 573 | | | Further factors influencing corrosion | 573 | | | Thickness of cover to reinforcement and and amount and an end and | 575 | | ME | Tests for penetrability of concrete to chlorides | 576 | | 305 | Stopping corrosion suit and the last the second sec | 576 | | 362 | References with the boltzmacheological approximation | 577 | | 507 | Acid attack on concrete | | | 12 | Testing of hardened concrete | 583 | | Ole | ance are of some age of states at the polyment of the state sta | 200 | | 916 | Tests for strength in compression | 583 | | 512 | Cube test | 584 | | MA | Cylinder test War. Sanatalan station as and T | 585 | | 513 | Equivalent cube test south and the standard standard box standard box standard stand | 586 | | 315 | Effect of end condition of specimen and capping | 586 | | 915 | Non-bonded caps | 588 | | | Testing of compression specimens | 590 | | | Failure of compression specimens and the second | 592 | | 415 | Effect of height/diameter ratio on strength of cylinders | 593 | | 521 | Comparison of strengths of cubes and cylinders | 596 | | EST: | Tests for strength in tension | 597 | | 222 | Tests for strength in tension Flexural strength tests | 598 | | | Splitting tension test of assessment and a submiddle and and | 600 | | 525 | Influence on strength of moisture condition during test | 602 | | 325 | Influence of size of specimen on strength | 603 | | 122 | Size effects in tensile strength tests | 605 | | 183 | Size effects in compressive strength tests | 608 | | | Specimen size and aggregate size | 611 | | 539 | Test cores controlled to bee gained bee gravest to about | 613 | | | Use of small cores | 614 | | | Factors influencing strength of cores | 614 | | H2 | Relation of core strength to strength in situ | 618 | | 346 | Cast-in-place cylinder test | 619 | | 248 | Influence of rate of application of load on strength | 620 | | 586 | Accelerated-curing test | 621 | | 552 | Direct use of accelerated-curing strength | 624 | | 154 | Non-destructive tests | 625 | | 555 | Rebound hammer test | 626 | | 356 | Penetration resistance test | 629 | | 多多名 | Pull-out test unwends that granters of promote to some terms to size T | 630 | | 008 | Post-installed tests | 632 | | 563 | Ultrasonic pulse velocity test | 632 | | 365 | Further possibilities in non-destructive testing | 635 | | 265 | Resonant frequency method the book of the book of the second seco | 636 | | 567 | Tests on the composition of hardened concrete | 637 | | 705 | Elastic properties of high-tweight aggregate concentration of | 637 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----| | MIL | Determination of the original water/cement ratio | 638 | | | Physical methods not observed influentially a seited on Learent T | 638 | | OIT | Variability of test results | 638 | | 115 | Distribution of strength | 639 | | FIF | Standard deviation | 642 | | | References streamen gridles/1 | 643 | | Tit | Remark about specialized concretes | | | 13 | Concretes with particular properties | 651 | | | Concretes with different cementitious materials | 651 | | | General features of use of fly ash, ggbs, and silica fume | 652 | | | Durability aspects | 653 | | | Variability of materials | 654 | | | Concrete containing fly ash | 655 | | | Influence of fly ash on properties of fresh concrete | 656 | | | Hydration of fly ash | 657 | | | Strength development of fly ash concrete | 659 | | | Durability of fly ash concrete | 662 | | | Concretes containing ground granulated blastfurnace slag (ggbs) | 663 | | | Influence of ggbs on properties of fresh concrete | 664 | | | Hydration and strength development of concrete containing ggbs | 664 | | | Durability aspects of concrete containing ggbs | 667 | | | Concrete containing silica fume | 668 | | | Influence of silica fume on properties of fresh concrete | 669 | | | Hydration and strength development of the Portland | | | | cement-silica fume system | 671 | | | Durability of concrete containing silica fume | 674 | | | High performance concrete | 676 | | | Properties of aggregate in high performance concrete | 678 | | PACE TO SERVICE AND ADDRESS OF THE | Aspects of high performance concrete in the fresh state | 679 | | | Compatibility of Portland cement and superplasticizer | 680 | | | Aspects of hardened high performance concrete | 682 | | | Testing of high performance concrete | 686 | | | Durability of high performance concrete | 687 | | | The future of high performance concrete | 689 | | | Lightweight concrete | 690 | | | Classification of lightweight concretes | 690 | | | Lightweight aggregates | 691 | | | Natural aggregates | 691 | | | Manufactured aggregates | 694 | | | Requirements for aggregates for structural concrete | 696 | | | Effects of water absorption by lightweight aggregate | 698 | | 100 | Lightweight aggregate concrete | 700 | | | Aspects of the fresh state | 700 | | | Strength of lightweight aggregate concrete | 701 | | | Lightweight aggregate-matrix bond | 704 | | 137 | Elastic properties of lightweight aggregate concrete | 705 | |--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | 369 | Durability of lightweight aggregate concrete and to make the second | 706 | | 850 | Thermal properties of lightweight aggregate concrete | 708 | | 638 | Cellular concrete address per lo yulidanav | 710 | | 260 | Autoclaved aerated concrete | 711 | | 219 | No-fines concrete | 713 | | 643 | Nailing concrete | 716 | | | Remark about specialized concretes | 717 | | 150 | References 2011 19010 teleported their existence 2 | 717 | | 130 | Congress with different concentitions materials | | | 14 | Selection of concrete mix proportions (mix design) | 726 | | 120 | Localization of talking and according to the control of the control of the control of talking and talk | | | 420 | Cost considerations | 727 | | 220 | Specifications | 727 | | | The process of mix selection | 729 | | 657 | Mean strength and minimum strength | 731 | | 659 | variability of strength | 734 | | | Quality control | 740 | | 666 | Factors governing the selection of mix proportions | 741 | | 664 | Durability | 741 | | 464 | Workability | 745 | | | Workability Maximum size of aggregate | 745 | | 8116 | Grading and type of aggregate | 746 | | | Cement content | 747 | | | Mix proportions and quantities per batch | 747 | | ira. | Calculation by absolute volume | 749 | | ATA | Combining aggregates to obtain a type grading | 750 | | ATA | American method of selection of mix proportions | 754 | | ATA | Example | 757 | | 619 | Mix selection for no-slump concrete | 758 | | 086 | Mix selection for flowing concrete | 758 | | | Mix selection for high performance concrete | 760 | | 080 | VIIX Selection for lightweight aggregate concrete | 761 | | 780 | Example | 762 | | | British method of mix selection (mix design) | 764 | | (REA | Example State of the t | 769 | | 000 | Other methods of mix selection | 770 | | 100 | Concluding remarks | 771 | | I wa | References - Communication of the Artists of the Communication Co | 772 | | | A reserved by the search of th | 5 PT | | Appe | andiy I. Palayant ASTM Standards | 774 | | Appe | endix II: Relevant British and European Standards | 778 | | Nam | e index and the second of the control contro | 783 | | 100 | ect index alled from allegation of the state | 799 | | 131310 | The state of s | 13/03/11 | The first transfer and the second of sec