CONTENTS

1 General Principles 3

Chapter Objectives 3

- 1.1 Mechanics 3
- 1.2 Fundamental Concepts 4
- 1.3 The International System of Units 7
- 1.4 Numerical Calculations 10
- 1.5 General Procedure for Analysis 12

Proce Vectors 17

- 2.1 Scalars and Vectors 17
- 2.2 Vector Operations 18
- 2.3 Vector Addition of Forces 20
- 2.4 Addition of a System of Coplanar Forces 33
- 2.5 Cartesian Vectors 44
- 2.6 Addition of Cartesian Vectors 47
- 2.7 Position Vectors 56
- 2.8 Force Vector Directed Along a Line 59
- 2.9 Dot Product 69

3 Equilibrium of a Particle 87

Chapter Objectives 87

- 3.1 Condition for the Equilibrium of a Particle 87
- 3.2 The Free-Body Diagram 88
- 3.3 Coplanar Force Systems 91
- 3.4 Three-Dimensional Force Systems 106

Force System Resultants 121

- **4.1** Moment of a Force—Scalar Formulation 121
- 4.2 Cross Product 125
- 4.3 Moment of a Force—Vector Formulation 128
- 4.4 Principle of Moments 132
- 4.5 Moment of a Force about a Specified Axis 145
- 4.6 Moment of a Couple 154
- **4.7** Simplification of a Force and Couple System 166
- 4.8 Further Simplification of a Force and Couple System 177
- **4.9** Reduction of a Simple Distributed Loading 190

5 Equilibrium of a Rigid Body 207

Chapter Objectives 207

- 5.1 Conditions for Rigid-Body Equilibrium 207
- 5.2 Free-Body Diagrams 209
- 5.3 Equations of Equilibrium 220
- 5.4 Two- and Three-Force Members 230
- 5.5 Free-Body Diagrams 245
- 5.6 Equations of Equilibrium 250
- 5.7 Constraints and Statical Determinacy 251

6 Structural Analysis 273

- 6.1 Simple Trusses 273
- 6.2 The Method of Joints 276
- 6.3 Zero-Force Members 282
- 6.4 The Method of Sections 291
- 6.5 Space Trusses 301
- 6.6 Frames and Machines 305

7 Internal Forces 343

Chapter Objectives 343

- 7.1 Internal Loadings Developed in Structural Members 343
- 7.2 Shear and Moment Equations and Diagrams 361
- 7.3 Relations between Distributed Load, Shear, and Moment 370
- 7.4 Cables 381

8 Friction 401

- 8.1 Characteristics of Dry Friction 401
- 8.2 Problems Involving Dry Friction 406
- 8.3 Wedges 430
- 8.4 Frictional Forces on Screws 432
- 8.5 Frictional Forces on Flat Belts 439
- 8.6 Frictional Forces on Collar Bearings, Pivot Bearings, and Disks 447
- 8.7 Frictional Forces on Journal Bearings 450
- 8.8 Rolling Resistance 452

9 Center of Gravity and Centroid 465

Chapter Objectives 465

- 9.1 Center of Gravity, Center of Mass, and the Centroid of a Body 465
- 9.2 Composite Bodies 488
- 9.3 Theorems of Pappus and Guldinus 502
- 9.4 Resultant of a General Distributed Loading 511
- 9.5 Fluid Pressure 512

10 Moments of Inertia 529

- 10.1 Definition of Moments of Inertia for Areas 529
- 10.2 Parallel-Axis Theorem for an Area 530
- 10.3 Radius of Gyration of an Area 531
- 10.4 Moments of Inertia for Composite
 Areas 540
- 10.5 Product of Inertia for an Area 548
- 10.6 Moments of Inertia for an Area about Inclined Axes 552
- 10.7 Mohr's Circle for Moments of Inertia 555
- 10.8 Mass Moment of Inertia 563

11 Virtual Work 581

Chapter Objectives 581 Definition of Work 581 11.1 11.2 Principle of Virtual Work 583 Principle of Virtual Work for a System of 11.3 Connected Rigid Bodies 585 11.4 Conservative Forces 597 Potential Energy 598 11.5 Potential-Energy Criterion for 11.6 Equilibrium 600 Stability of Equilibrium Configuration 601 11.7

10 VE Metro Chale for Moments of Incitio

12 Kinematics of a Particle 617

Chapter Objectives 617

12.1 Introduction 617

12.2 Rectilinear Kinematics: Continuous Motion 619

12.3 Rectilinear Kinematics: Erratic Motion 634

12.4 General Curvilinear Motion 648

12.5 Curvilinear Motion: Rectangular Components 650

12.6 Motion of a Projectile 655

12.7 Curvilinear Motion: Normal and Tangential Components 670

12.8 Curvilinear Motion: Cylindrical Components 685

12.9 Absolute Dependent Motion Analysis of Two Particles 699

12.10 Relative-Motion of Two Particles Using Translating Axes 705

Angular Momenus in 195
Principle of Angular Impulse and
Momentum 803
Steady Flow of a Fluid Stream 909

17.5 Templis Front solution

Relative-Motion Analysis Using Potation

13 Kinetics of a Particle: Force and Acceleration 727

Chapter Objectives 727

- 13.1 Newton's Second Law of Motion 727
- 13.2 The Equation of Motion 730
- 13.3 Equation of Motion for a System of Particles 732
- 13.4 Equations of Motion: Rectangular Coordinates 734
- 13.5 Equations of Motion: Normal and Tangential Coordinates 752
- 13.6 Equations of Motion: Cylindrical Coordinates 766
- *13.7 Central-Force Motion and Space Mechanics 778

14 Kinetics of a Particle: Work and Energy 793

- 14.1 The Work of a Force 793
- 14.2 Principle of Work and Energy 798
- 14.3 Principle of Work and Energy for a System of Particles 800
- 14.4 Power and Efficiency 818
- 14.5 Conservative Forces and Potential Energy 827
- 14.6 Conservation of Energy 831

15 Kinetics of a Particle: Impulse and Momentum 851

Chapter Objectives 851 Principle of Linear Impulse and 15.1 Momentum 851 Principle of Linear Impulse and Momentum 15.2 for a System of Particles 854 Conservation of Linear Momentum for a 15.3 System of Particles 868 15.4 Impact 880 Angular Momentum 894 15.5 Relation Between Moment of a Force and 15.6 Angular Momentum 895 Principle of Angular Impulse and 15.7 Momentum 898 Steady Flow of a Fluid Stream 909 15.8 Propulsion with Variable Mass 914 *15.9

16 Planar Kinematics of a Rigid Body 933

Chapter Objectives 933

16.1 Planar Rigid-Body Motion 933

16.2 Translation 935

16.3 Rotation about a Fixed Axis 936

16.4 Absolute Motion Analysis 952

16.5 Relative-Motion Analysis: Velocity 960

16.6 Instantaneous Center of Zero Velocity 974

16.7 Relative-Motion Analysis:

16.8 Relative-Motion Analysis Using Rotating Axes 1003

Acceleration 987

17 Planar Kinetics of a Rigid Body: Force and Acceleration 1023

Chapter Objectives 1023

- 17.1 Mass Moment of Inertia 1023
- 17.2 Planar Kinetic Equations of Motion 1037
- 17.3 Equations of Motion: Translation 1040
- 17.4 Equations of Motion: Rotation about a Fixed Axis 1055
- 17.5 Equations of Motion: General Plane Motion 1070

18 Planar Kinetics of a Rigid Body: Work and Energy 1087

- 18.1 Kinetic Energy 1087
- 18.2 The Work of a Force 1090
- 18.3 The Work of a Couple Moment 1092
- 18.4 Principle of Work and Energy 1094
- 18.5 Conservation of Energy 1110

17.4 Equations of Wlotion: Rotation about a fixed Axis 1055
17.5 Equations of Workon: General Plane Motion 1070

18.3 The Work of a Couple Moment 1992
18.4 Principle of Work and Energy 1994
18.5 Conservation of Energy 1110

19	
Planar Kinetics of	fa
Rigid Body: Impu	ılse
and Momentum	1131

	Chapter Objectives 1131
19.1	Linear and Angular Momentum 1131
19.2	Principle of Impulse and Momentum 1137
19.3	Conservation of Momentum 1154
19.4	Eccentric Impact 1158

20 Three-Dimensional Kinematics of a Rigid Body (Web Chapter)

Chapter Objectives

20.1 Rotation about a Fixed Point

*20.2 The Time Derivative of a Vector Measured from Either a Fixed or Translating-Rotating System

20.3 General Motion

*20.4 Relative-Motion Analysis Using Translating and Rotating Axes

21 Three-Dimensional Kinetics of a Rigid Body (Web Chapter)

Chapter Objectives

- *21.1 Moments and Products of Inertia
- 21.2 Angular Momentum
 - 21.3 Kinetic Energy
 - *21.4 Equations of Motion
 - *21.5 Gyroscopic Motion
- maldon9 waivs21.6 Torque-Free Motion

Vibrations (Web Chapter)

- *22.1 Undamped Free Vibration
- *22.2 Energy Methods
- *22.3 Undamped Forced Vibration
- *22.4 Viscous Damped Free Vibration
- *22.5 Viscous Damped Forced Vibration
- *22.6 Electrical Circuit Analogs

Appendix

- A. Mathematical Review and Expressions 1174
- B. Vector Analysis 1178
- C. The Chain Rule 1183

Fundamental Problems
Partial Solutions and
Answers 1186

Preliminary
Problems 1224

Review Problem
Solutions 1244

Answers to Selected Problems 1265

Index 1287