Contents

About the Authors viii Preface ix To the Student xxx

PART 1 Mechanics 1

1 Physics and Measurement 2

- 1.1 Standards of Length, Mass, and Time 3
- 1.2 Matter and Model Building 6
- 1.3 Dimensional Analysis 7
- 1.4 Conversion of Units 9
- 1.5 Estimates and Order-of-Magnitude Calculations 10
- 1.6 Significant Figures 11

2 Motion in One Dimension 21

- 2.1 Position, Velocity, and Speed 22
- 2.2 Instantaneous Velocity and Speed 25
- 2.3 Analysis Model: Particle Under Constant Velocity 28
- 2.4 Acceleration 31
- 2.5 Motion Diagrams 35
- 2.6 Analysis Model: Particle Under Constant Acceleration 36
- 2.7 Freely Falling Objects 40
- 2.8 Kinematic Equations Derived from Calculus 43
- 3 Vectors 59
- 3.1 Coordinate Systems 59
- 3.2 Vector and Scalar Quantities 61
- 3.3 Some Properties of Vectors 62
- 3.4 Components of a Vector and Unit Vectors 65

4 Motion in Two Dimensions 78

- 4.1 The Position, Velocity, and Acceleration Vectors 78
- 4.2 Two-Dimensional Motion with Constant Acceleration 81
- 4.3 Projectile Motion 84
- 4.4 Analysis Model: Particle in Uniform Circular Motion 91
- 4.5 Tangential and Radial Acceleration 94
- 4.6 Relative Velocity and Relative Acceleration 96

5 The Laws of Motion 111

- 5.1 The Concept of Force 111
- 5.2 Newton's First Law and Inertial Frames 113
- 5.3 Mass 114
- 5.4 Newton's Second Law 115
- 5.5 The Gravitational Force and Weight 117
- 5.6 Newton's Third Law 118
- 5.7 Analysis Models Using Newton's Second Law 120
- 5.8 Forces of Friction 130

6 Circular Motion and Other Applications of Newton's Laws 150

- 6.1 Extending the Particle in Uniform Circular Motion Model 150
- 6.2 Nonuniform Circular Motion 156
- 6.3 Motion in Accelerated Frames 158
- 6.4 Motion in the Presence of Resistive Forces 161

7 Energy of a System 177

- 7.1 Systems and Environments 178
- 7.2 Work Done by a Constant Force 178
- 7.3 The Scalar Product of Two Vectors 181
- 7.4 Work Done by a Varying Force 183
- 7.5 Kinetic Energy and the Work-Kinetic Energy Theorem 188
- 7.6 Potential Energy of a System 191
- 7.7 Conservative and Nonconservative Forces 196
- 7.8 Relationship Between Conservative Forces and Potential Energy 198
- 7.9 Energy Diagrams and Equilibrium of a System 199

8 Conservation of Energy 211

- 8.1 Analysis Model: Nonisolated System (Energy) 212
- 8.2 Analysis Model: Isolated System (Energy) 215
- 8.3 Situations Involving Kinetic Friction 222
- 8.4 Changes in Mechanical Energy for Nonconservative Forces 227
- 8.5 Power 232

9 Linear Momentum and Collisions 247

- 9.1 Linear Momentum 247
- 9.2 Analysis Model: Isolated System (Momentum) 250
- 9.3 Analysis Model: Nonisolated System (Momentum) 252
- 9.4 Collisions in One Dimension 256
- 9.5 Collisions in Two Dimensions 264
- 9.6 The Center of Mass 267
- 9.7 Systems of Many Particles 272
- 9.8 Deformable Systems 275
- 9.9 Rocket Propulsion 277

10 Rotation of a Rigid Object About a Fixed Axis 293

- 10.1 Angular Position, Velocity, and Acceleration 293
- 10.2 Analysis Model: Rigid Object Under Constant Angular Acceleration 296
- 10.3 Angular and Translational Quantities 298
- 10.4 Torque 300
- 10.5 Analysis Model: Rigid Object Under a Net Torque 302
- 10.6 Calculation of Moments of Inertia 307
- 10.7 Rotational Kinetic Energy 311
- 10.8 Energy Considerations in Rotational Motion 31210.9 Rolling Motion of a Rigid Object 316
- 11 Angular Momentum 335
- 11.1 The Vector Product and Torque 335
- 11.2 Analysis Model: Nonisolated System (Angular Momentum) 338

v

- 11.3 Angular Momentum of a Rotating Rigid Object 342
- 11.4 Analysis Model: Isolated System (Angular Momentum) 345
- 11.5 The Motion of Gyroscopes and Tops 350

12 Static Equilibrium and Elasticity 363

- 12.1 Analysis Model: Rigid Object in Equilibrium 363
- 12.2 More on the Center of Gravity 365
- 12.3 Examples of Rigid Objects in Static Equilibrium 366
- 12.4 Elastic Properties of Solids 373

13 Universal Gravitation 388

- 13.1 Newton's Law of Universal Gravitation 389
- 13.2 Free-Fall Acceleration and the Gravitational Force 391
- 13.3 Analysis Model: Particle in a Field (Gravitational) 392
- 13.4 Kepler's Laws and the Motion of Planets 394
- 13.5 Gravitational Potential Energy 400
- 13.6 Energy Considerations in Planetary and Satellite Motion 402

14 Fluid Mechanics 417

- 14.1 Pressure 417
- 14.2 Variation of Pressure with Depth 419
- 14.3 Pressure Measurements 423
- 14.4 Buoyant Forces and Archimedes's Principle 423
- 14.5 Fluid Dynamics 427
- 14.6 Bernoulli's Equation 430
- 14.7 Other Applications of Fluid Dynamics 433

PART 2 Oscillations and Mechanical Waves 449

15 Oscillatory Motion 450

- 15.1 Motion of an Object Attached to a Spring 450
- 15.2 Analysis Model: Particle in Simple Harmonic Motion 452
- 15.3 Energy of the Simple Harmonic Oscillator 458
- 15.4 Comparing Simple Harmonic Motion with Uniform
- Circular Motion 462
- 15.5 The Pendulum 464
- 15.6 Damped Oscillations 468
- 15.7 Forced Oscillations 469

16 Wave Motion 483

- 16.1 Propagation of a Disturbance 484
- 16.2 Analysis Model: Traveling Wave 487
- 16.3 The Speed of Waves on Strings 491
- 16.4 Reflection and Transmission 494
- 16.5 Rate of Energy Transfer by Sinusoidal Waves on Strings 495
- 16.6 The Linear Wave Equation 497

17 Sound Waves 507

- 17.1 Pressure Variations in Sound Waves 508
- 17.2 Speed of Sound Waves 510
- 17.3 Intensity of Periodic Sound Waves 512
- 17.4 The Doppler Effect 517

18 Superposition and Standing Waves 533

- 18.1 Analysis Model: Waves in Interference 534
- 18.2 Standing Waves 538
- 18.3 Analysis Model: Waves Under Boundary Conditions 541
- 18.4 Resonance 546
- 18.5 Standing Waves in Air Columns 546
- 18.6 Standing Waves in Rods and Membranes 550
- 18.7 Beats: Interference in Time 550
- 18.8 Nonsinusoidal Wave Patterns 553

PART **3** Thermodynamics **567**

19 Temperature 568

- 19.1 Temperature and the Zeroth Law of Thermodynamics 568
- 19.2 Thermometers and the Celsius Temperature Scale 57019.3 The Constant-Volume Gas Thermometer and the Absolute Temperature Scale 571
- 19.4 Thermal Expansion of Solids and Liquids 573
- 19.5 Macroscopic Description of an Ideal Gas 578

20 The First Law of Thermodynamics 590

- 20.1 Heat and Internal Energy 590
- 20.2 Specific Heat and Calorimetry 593
- 20.3 Latent Heat 597
- 20.4 Work and Heat in Thermodynamic Processes 601
- 20.5 The First Law of Thermodynamics 603
- 20.6 Some Applications of the First Law of Thermodynamics 604
- 20.7 Energy Transfer Mechanisms in Thermal Processes 608

21 The Kinetic Theory of Gases 626

- 21.1 Molecular Model of an Ideal Gas 627
- 21.2 Molar Specific Heat of an Ideal Gas 631
- 21.3 The Equipartition of Energy 635
- 21.4 Adiabatic Processes for an Ideal Gas 637
- 21.5 Distribution of Molecular Speeds 639

22 Heat Engines, Entropy, and the Second Law of Thermodynamics 653

- 22.1 Heat Engines and the Second Law of Thermodynamics 654
- 22.2 Heat Pumps and Refrigerators 656
- 22.3 Reversible and Irreversible Processes 659
- 22.4 The Carnot Engine 660
- 22.5 Gasoline and Diesel Engines 665
- 22.6 Entropy 667
- 22.7 Changes in Entropy for Thermodynamic Systems 671
- 22.8 Entropy and the Second Law 676
- PART **4** Electricity and

Magnetism 689

23 Electric Fields 690

- 23.1 Properties of Electric Charges 690
- 23.2 Charging Objects by Induction 692
- 23.3 Coulomb's Law 694
- 23.4 Analysis Model: Particle in a Field (Electric) 699
- 23.5 Electric Field of a Continuous Charge Distribution 704
- 23.6 Electric Field Lines 708
- 23.7 Motion of a Charged Particle in a Uniform Electric Field 710

24 Gauss's Law 725

- 24.1 Electric Flux 725
- 24.2 Gauss's Law 728
- 24.3 Application of Gauss's Law to Various Charge Distributions 731
- 24.4 Conductors in Electrostatic Equilibrium 735

25.1 Electric Potential and Potential Difference 746

25.2 Potential Difference in a Uniform Electric Field 748

25 Electric Potential 746

Contents

vi

- 25.3 Electric Potential and Potential Energy Due to Point Charges 752
- 25.4 Obtaining the Value of the Electric Field from the Electric Potential 755
- 25.5 Electric Potential Due to Continuous Charge Distributions 756
- 25.6 Electric Potential Due to a Charged Conductor 761
- 25.7 The Millikan Oil-Drop Experiment 764
- 25.8 Applications of Electrostatics 765

26 Capacitance and Dielectrics 777

- 26.1 Definition of Capacitance 777
- 26.2 Calculating Capacitance 779
- 26.3 Combinations of Capacitors 782
- 26.4 Energy Stored in a Charged Capacitor 786
- 26.5 Capacitors with Dielectrics 790
- 26.6 Electric Dipole in an Electric Field 793
- 26.7 An Atomic Description of Dielectrics 795

27 Current and Resistance 808

- 27.1 Electric Current 808
- 27.2 Resistance 811
- 27.3 A Model for Electrical Conduction 816
- 27.4 Resistance and Temperature 819
- 27.5 Superconductors 819
- 27.6 Electrical Power 820

28 Direct-Current Circuits 833

- 28.1 Electromotive Force 833
- 28.2 Resistors in Series and Parallel 836
- 28.3 Kirchhoff's Rules 843
- 28.4 RC Circuits 846
- 28.5 Household Wiring and Electrical Safety 852

29 Magnetic Fields 868

- 29.1 Analysis Model: Particle in a Field (Magnetic) 869
- 29.2 Motion of a Charged Particle in a Uniform Magnetic Field 874
- 29.3 Applications Involving Charged Particles Moving in a Magnetic Field 879
- 29.4 Magnetic Force Acting on a Current-Carrying Conductor 882
- 29.5 Torque on a Current Loop in a Uniform Magnetic Field 885
- 29.6 The Hall Effect 890

30 Sources of the Magnetic Field **904**

- 30.1 The Biot-Savart Law 904
- 30.2 The Magnetic Force Between Two Parallel Conductors 909
- 30.3 Ampère's Law 911
- 30.4 The Magnetic Field of a Solenoid 915
- 30.5 Gauss's Law in Magnetism 916
- 30.6 Magnetism in Matter 919

31 Faraday's Law 935

- 31.1 Faraday's Law of Induction 935
- 31.2 Motional emf 939
- 31.3 Lenz's Law 944
- 31.4 Induced emf and Electric Fields 947
- 31.5 Generators and Motors 949
- 31.6 Eddy Currents 953

32 Inductance 970

- 32.1 Self-Induction and Inductance 970
- 32.2 RL Circuits 972
- 32.3 Energy in a Magnetic Field 976
- 32.4 Mutual Inductance 978
- 32.5 Oscillations in an *LC* Circuit 980
- 32.6 The RLC Circuit 984

33 Alternating-Current Circuits 998

- 33.1 AC Sources 998
- 33.2 Resistors in an AC Circuit 999
- 33.3 Inductors in an AC Circuit 1002
- 33.4 Capacitors in an AC Circuit 1004
- 33.5 The *RLC* Series Circuit 1007
- 33.6 Power in an AC Circuit 1011
- 33.7 Resonance in a Series *RLC* Circuit 1013
- 33.8 The Transformer and Power Transmission 1015
- 33.9 Rectifiers and Filters 1018

34 Electromagnetic Waves 1030

- 34.1 Displacement Current and the General Form of Ampère's Law 1031
- 34.2 Maxwell's Equations and Hertz's Discoveries 1033
- 34.3 Plane Electromagnetic Waves 1035
- 34.4 Energy Carried by Electromagnetic Waves 1039
- 34.5 Momentum and Radiation Pressure 1042
- 34.6 Production of Electromagnetic Waves by an Antenna 1044
- 34.7 The Spectrum of Electromagnetic Waves 1045

PART **5** Light and Optics **1057**

35 The Nature of Light and the Principles of Ray Optics 1058

- 35.1 The Nature of Light 1058
- 35.2 Measurements of the Speed of Light 1059
- 35.3 The Ray Approximation in Ray Optics 1061
- 35.4 Analysis Model: Wave Under Reflection 1061
- 35.5 Analysis Model: Wave Under Refraction 1065
- 35.6 Huygens's Principle 1071
- 35.7 Dispersion 1072
- 35.8 Total Internal Reflection 1074

36 Image Formation 1090

- 36.1 Images Formed by Flat Mirrors 1090
- 36.2 Images Formed by Spherical Mirrors 1093
- 36.3 Images Formed by Refraction 1100
- 36.4 Images Formed by Thin Lenses 1104
- 36.5 Lens Aberrations 1112
- 36.6 The Camera 1113
- 36.7 The Eye 1115
- 36.8 The Simple Magnifier 1118
- 36.9 The Compound Microscope 1119

37.5 Interference in Thin Films 1144

38.4 The Diffraction Grating 1169

37.6 The Michelson Interferometer 1147

36.10 The Telescope 1120

37 Wave Optics 1134

- 37.1 Young's Double-Slit Experiment 1134
- 37.2 Analysis Model: Waves in Interference 1137
- 37.3 Intensity Distribution of the Double-Slit Interference Pattern 1140

38 Diffraction Patterns and Polarization 1160

1166

37.4 Change of Phase Due to Reflection 1143

38.1 Introduction to Diffraction Patterns 116038.2 Diffraction Patterns from Narrow Slits 1161

38.5 Diffraction of X-Rays by Crystals 1174

38.6 Polarization of Light Waves 1175

38.3 Resolution of Single-Slit and Circular Apertures

PART **6** Modern Physics **1191**

39 Relativity 1192

- 39.1 The Principle of Galilean Relativity 1193
- 39.2 The Michelson–Morley Experiment 1196
- 39.3 Einstein's Principle of Relativity 1198
- 39.4 Consequences of the Special Theory of Relativity 1199
- 39.5 The Lorentz Transformation Equations 1210
- 39.6 The Lorentz Velocity Transformation Equations 1212
- 39.7 Relativistic Linear Momentum 1214
- 39.8 Relativistic Energy 1216
- 39.9 The General Theory of Relativity 1220

40 Introduction to Quantum Physics 1233

- 40.1 Blackbody Radiation and Planck's Hypothesis 1234
- 40.2 The Photoelectric Effect 1240
- 40.3 The Compton Effect 1246
- 40.4 The Nature of Electromagnetic Waves 1249
- 40.5 The Wave Properties of Particles 1249
- 40.6 A New Model: The Quantum Particle 1252
- 40.7 The Double-Slit Experiment Revisited 1255
- 40.8 The Uncertainty Principle 1256

41 Quantum Mechanics 1267

- 41.1 The Wave Function 1267
- 41.2 Analysis Model: Quantum Particle Under Boundary Conditions 1271
- 41.3 The Schrödinger Equation 1277
- 41.4 A Particle in a Well of Finite Height 1279
- 41.5 Tunneling Through a Potential Energy Barrier 1281
- 41.6 Applications of Tunneling 1282
- 41.7 The Simple Harmonic Oscillator 1286

42 Atomic Physics 1296

- 42.1 Atomic Spectra of Gases 1297
- 42.2 Early Models of the Atom 1299
- 42.3 Bohr's Model of the Hydrogen Atom 1300
- 42.4 The Quantum Model of the Hydrogen Atom 1306
- 42.5 The Wave Functions for Hydrogen 1308
- 42.6 Physical Interpretation of the Quantum Numbers 1311
- 42.7 The Exclusion Principle and the Periodic Table 1318
- 42.8 More on Atomic Spectra: Visible and X-Ray 1322
- 42.9 Spontaneous and Stimulated Transitions 1325
- 42.10 Lasers 1326

43 Molecules and Solids 1340

- 43.1 Molecular Bonds 1341
- 43.2 Energy States and Spectra of Molecules 1344
- 43.3 Bonding in Solids 1352
- 43.4 Free-Electron Theory of Metals 1355
- 43.5 Band Theory of Solids 1359
- 43.6 Electrical Conduction in Metals, Insulators, and Semiconductors 1361
- 43.7 Semiconductor Devices 1364
- 43.8 Superconductivity 1370

44 Nuclear Structure 1380

- 44.1 Some Properties of Nuclei 1381
- 44.2 Nuclear Binding Energy 1386
- 44.3 Nuclear Models 1387
- 44.4 Radioactivity 1390

- 44.5 The Decay Processes 1394
- 44.6 Natural Radioactivity 1404
- 44.7 Nuclear Reactions 1405
- 44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imaging 1406

45 Applications of Nuclear Physics 1418

- 45.1 Interactions Involving Neutrons 1418
- 45.2 Nuclear Fission 1419
- 45.3 Nuclear Reactors 1421
- 45.4 Nuclear Fusion 1425
- 45.5 Radiation Damage 1432
- 45.6 Uses of Radiation 1434

46 Particle Physics and Cosmology 1447

- 46.1 The Fundamental Forces in Nature 1448
- 46.2 Positrons and Other Antiparticles 1449
- 46.3 Mesons and the Beginning of Particle Physics 1451
- 46.4 Classification of Particles 1454
- 46.5 Conservation Laws 1455
- 46.6 Strange Particles and Strangeness 1459
- 46.7 Finding Patterns in the Particles 1460
- 46.8 Quarks 1462
- 46.9 Multicolored Quarks 1465
- 46.10 The Standard Model 1467
- 46.11 The Cosmic Connection 1469
- 46.12 Problems and Perspectives 1474

Appendices

A Tables A-1

- A.1 Conversion Factors A-1
- A.2 Symbols, Dimensions, and Units of Physical Quantities A-2

B Mathematics Review A-4

- B.1 Scientific Notation A-4
- B.2 Algebra A-5
- B.3 Geometry A-10
- B.4 Trigonometry A-11
- B.5 Series Expansions A-13
- B.6 Differential Calculus A-13
- B.7 Integral Calculus A-16
- B.8 Propagation of Uncertainty A-20
- C Periodic Table of the Elements A-22

D SI Units A-24

- D.1 SI Units A-24
- D.2 Some Derived SI Units A-24

Answers to Quick Quizzes and Odd-Numbered Problems A-25

Index I-1