Foreword

Preface

Acknowledgments

Chapter 1. Hazards of Electricity

Introduction

Hazard Analysis

Shock

Description

Influencing Factors

Arc

Definition and Description

Arc Energy Release

Arc Energy

Arc Energy Input

Arcing Voltage

Arc Surface Area

Incident Energy

Arc Burns

Blast

Affected Body Parts

General

Skin

The Nervous System

Muscular System

The Heart

The Pulmonary System

Summary of Causes—Injury and Death

Shock Effect

Arc-Flash Effect

Causes of Injury

Causes of Death

Protective Strategies

References

Chapter 2. Basic Physics of Electrical Hazards

Introduction

Electromagnetism

Introduction

The Four Fundamental Forces (Interactions) of Nature

The Electromagnetic Spectrum

Electrical Properties of Materials

Conductors

Nonconductors

Physics Considerations in Electrical Fault Conditions

Risks

Bolted Fault

Arcing Fault

Review of Foundational Approaches to Interpreting Arcing Phenomena

Summary

References

Chapter 3. Electrical Safety Equipment

Introduction

General Inspection and Testing Requirements for Electrical Safety Equipment

Arc-Flash and Thermal Protection

A Note on When to Use Thermal Protective Clothing

Thermal Performance Evaluation

Clothing Materials

Non-Arc-Rated Materials

Arc-Rated Materials

Work Clothing

Arc-Flash Suits

Head, Eye, and Hand Protection

Head and Eye Protection

Hard Hats

Safety Glasses, Goggles, and Face Shields

Rubber Insulating Equipment

Rubber Gloves

Rubber Mats

Rubber Blankets

Rubber Covers

Line Hose

Rubber Sleeves

In-Service Inspection and Periodic Testing of Rubber Goods

Hot Sticks

Description and Application

When to Use

How to Use

Testing Requirements

Insulated Tools

Description and Application

When to Use

How to Use and Care For

Barriers and Signs

Barrier Tape

Signs

When and How to Use

Safety Tags, Locks, and Locking Devices

Safety Tags

Locks and Multiple-Lock Devices

Locking Devices

When and Where to Use Lockout-Tagout

Voltage-Measuring Instruments

Safety Voltage Measurement

Proximity Testers

Contact Testers

Selecting Voltage-Measuring Instruments

Instrument Condition

Low-Voltage Voltmeter Safety Standards

Three-Step Voltage Measurement Process

General Considerations for Low-Voltage Measuring Instruments

Safety Grounding Equipment

The Need for Safety Grounding

Safety Grounding Switches

Safety Grounding Jumpers

Selecting Safety Grounding Jumpers

Installation and Location

Ground-Fault Circuit-Interrupters

Operating Principles

Applications

Arc-Fault Circuit-Interrupters

Safety Electrical One-Line Diagram

The Electrician's Safety Kit

References

Chapter 4. Safety Procedures and Methods

Introduction

Electrical Hazard Risk Assessments

Working While Exposed to Electrical Hazards

The Six-Step Safety Method

Think—Be Aware

Understand Your Procedures

Follow Your Procedures

Use Appropriate Safety Equipment

Ask If You Are Unsure, and Do Not Assume

Do Not Answer If You Do Not Know

Job Briefings

Definition

What Should Be Included?

When Should Job Briefings Be Held?

Energized or De-Energized?

The Fundamental Rules

A Hot-Work Decision Tree

After the Decision Is Made

Safe Switching of Power Systems

Introduction

Remote Operation

Operating Medium-Voltage Switchgear

Operating Low-Voltage Switchgear

Operating Molded-Case Breakers and Panelboards

Operating Enclosed Switches and Disconnects

Operating Open-Air Disconnects

Operating Motor Starters

Energy Control Programs

General Energy Control Programs

Specific Energy Control Programs

Basic Energy Control Rules

Lockout-Tagout

Definition and Description

When to Use Locks and Tags

Locks without Tags or Tags without Locks

Rules for Using Locks and Tags

Responsibilities of Employees

Sequence

Lock and Tag Application

Isolation Verification

Removal of Locks and Tags

Safety Ground Application

Control Transfer

Nonemployees and Contractors

Lockout-Tagout Training

Procedural Reviews

Voltage-Measurement Techniques

Purpose

Instrument Selection

Instrument Condition

Three-Step Measurement Process

What to Measure

How to Measure

Placement of Safety Grounds

Safety Grounding Principles

Safety Grounding Location

Application of Safety Grounds

The Equipotential Zone

Removal of Safety Grounds

Control of Safety Grounds

Arc-Flash Hazard Calculations and Approach Distances

Introduction

Approach Distance Definitions

Determining Shock Hazard Approach Distances

Calculating the Arc-Flash Hazard Minimum Approach Distance (Arc-Flash Protection Boundary)

Calculating the Required Level of Arc Protection (Arc-Flash Hazard Calculations)

Introduction

The Lee Method

Methods Outlined in NFPA 70E

IEEE Std 1584-2018

Software Solutions

Required PPE for Crossing the Arc-Flash Hazard Boundary

A Simplified Approach to the Selection of Protective Clothing

Barriers and Warning Signs

Illumination

Conductive Clothing and Materials

Confined Work Spaces

Tools and Test Equipment

General

Authorized Users

Visual Inspections

Electrical Tests

Wet and Hazardous Environments

Field Marking of Potential Hazards

The One-Minute Safety Audit

References

Chapter 5. Grounding and Bonding of Electrical Systems and Equipment

Introduction

Electric Shock Hazard

General Requirements for Grounding and Bonding

Grounding of Electrical Systems

Grounding of Electrical Equipment

Bonding of Electrically Conductive Materials and Other Equipment

Performance of Fault Path

Arrangement to Prevent Objectionable Current

Alterations to Stop Objectionable Current

Temporary Currents Not Classified as Objectionable Current

Connection of Grounding and Bonding Equipment

Protection of Ground Clamps and Fittings

Clean Surfaces

System Grounding

Purposes of System Grounding

Grounding Service-Supplied Alternating-Current Systems

Conductors to Be Grounded—Alternating-Current Systems

Main Bonding Jumper

Grounding Electrode System

Grounding Electrode System Resistance

Grounding Electrode Conductor

Grounding Conductor Connection to Electrodes

Bonding

Equipment Grounding

Equipment to Be Grounded

Grounding Cord- and Plug-Connected Equipment

Equipment Grounding Conductors

Sizing Equipment Grounding Conductors

Use of Grounded Circuit Conductor for Grounding Equipment

Ferroresonance

Summary

Chapter 6. Electrical Maintenance and Its Relationship to Safety

Introduction

The Safety-Related Case for Electrical Maintenance

Overview

Regulatory

Relationship of Improperly Maintained Electrical Equipment to the Hazards of Electricity

Maintenance and the Potential Impact on an Electrical Arc-Flash

Hazards Associated with Electrical Maintenance

The Economic Case for Electrical Maintenance

Reliability-Centered Maintenance (RCM)

What Is Reliability-Centered Maintenance?

A Brief History of RCM

RCM in the Industrial and Utility Arena

The Primary RCM Principles

Failure

Maintenance Actions in an RCM Program

Impact of RCM on a Facilities Life Cycle

Conclusion

The Eight-Step Maintenance Program

Introduction

Step 1—Plan

Step 2—Inspect

Step 3—Clean

Step 4—Tighten

Step 5—Lubricate

Step 6—Test

Step 7—Record

Step 8—Evaluate

Summary

Frequency of Maintenance

Determining Testing Intervals

Condition-Based Maintenance (CBM)

Introduction

The Elements of CBM

Data Analysis Methods for CBM

Maintenance Requirements for Specific Equipment and Locations

General Maintenance Requirements

Substations, Switchgear, Panelboards, Motor Control Centers, and Disconnect Switches

Fuse Maintenance Requirements

Molded-Case Circuit Breakers

Low-Voltage Power Circuit Breakers

Medium-Voltage Circuit Breakers

Protective Relays

Rotating Equipment

Portable Electric Tools and Equipment

Personal Safety and Protective Equipment

Electrical Safety by Design

Introduction

Including Safety in Engineering Design Criteria

Improved Engineering Standards

Conclusion

References

Chapter 7. Regulatory and Legal Safety Requirements and Standards

Introduction

The Regulatory Bodies

International Electrotechnical Commission (IEC)

American National Standards Institute (ANSI)

Institute of Electrical and Electronics Engineers (IEEE)

National Fire Protection Association (NFPA)

American Society for Testing and Materials (ASTM)

American Society of Safety Engineers (ASSE)

Occupational Safety and Health Administration (OSHA)

Other Electrical Safety Organizations

The National Electrical Safety Code (NESC)—IEEE C-2

General Description

Industries and Facilities Covered

Technical and Safety Items Covered

The National Electrical Code (NEC)—NFPA 70

General Description

Industries and Facilities Covered

Technical and Safety Items Covered

Electrical Equipment Maintenance—NFPA 70B

General Description

Industries and Facilities Covered

Technical and Safety Items Covered

Standard for Electrical Safety in the Workplace—NFPA 70E

General Description

Industries and Facilities Covered

Technical and Safety Items Covered

American Society for Testing and Materials (ASTM) Standards

Occupational Safety and Health Administration (OSHA) Standards

Overview

General Industry

Construction Industry

Chapter 8. Accident Prevention, Accident Investigation, Rescue, and First Aid

Introduction

Accident Prevention

Individual Responsibility

Installation Safety

Power System Studies

First Aid

General First Aid

Resuscitation (Artificial Respiration)

Heart-Lung Resuscitation

Automated External Defibrillator (AED)

How an AED Works

When Should an AED Be Used?

How to Use an Automated External Defibrillator

What Risks Are Associated with Using an Automated External Defibrillator?

Key Points about Automated External Defibrillators

Rescue Techniques

General Rescue Procedures

Elevated Rescue

Confined-Space Rescue

Ground-Level Rescue

Accident Investigation

Purpose

General Rules

Data Gathering

Accident Analysis

Chapter 9. Medical Aspects of Electrical Trauma

Introduction

Statistical Survey

Nonoccupational Electrical Trauma

Electrical Events

Electrocution and Electrical Fatalities

Medical Aspects

Nonelectrical Effects in Electrical Events

Survivor Experience

Worker Reflexes

Triage and Medical Evacuation

Medical and Surgical Intervention

Hospitalization Experience

Outpatient Care

Rehabilitation Focus and Return to Work Planning

Reentry to Employment Settings

Plateau in Recovery

References

Chapter 10. Low-Voltage Safety Synopsis

Introduction

Low-Voltage Equipment

Extension Cords

Electric Hand Tools

Current Transformers

Grounding Low-Voltage Systems

What Is a Ground?

Bonding versus Grounding

Voltage Hazards

System Grounds

Equipment Grounds

Ground-Fault Circuit Interrupters

Arc-Fault Circuit Interrupters

Safety Equipment

Overview

Hard Hats

Eye Protection

Arc Protection

Rubber Insulating Equipment

Voltage-Testing Devices

Safety Procedures

General

Approach Distances

Voltage Measurement

Locking and Tagging

Closing Protective Devices After Operation

Electrical Safety Around Electronic Circuits

The Nature of the Hazard

Special Safety Precautions

Stationary Battery Safety

Introduction

Basic Battery Construction

Safety Hazards of Stationary Batteries

Battery Safety Procedures

Electrical Hazards of the Home-Based Business

Electrical Hazards in the Home

Working Alone

Working with Employees

Evaluating Electrical Safety

Electrical Safety Checklists

Electrical Inspections by Professionals

Chapter 11. Medium- and High-Voltage Safety Synopsis

Introduction

High-Voltage Equipment

Current Transformers

Grounding Systems of over 1000 V

What Is a Ground?

Bonding versus Grounding

Voltage Hazards

System Grounds

Equipment Grounds

Safety Equipment

Overview

Hard Hats

Eye Protection

Arc Protection

Rubber Insulating Equipment

Voltage-Testing Devices

Safety Procedures

General

Approach Distances

Voltage Measurement

Locking and Tagging

Closing Protective Devices after Operation

Chapter 12. Human Factors in Electrical Safety

Introduction

Overview

Defense in Depth

Evolution of Human Factors

Visualization

Cognitive Ergonomics

Summary

References

Recommended Readings

Chapter 13. Safety Management and Organizational Structure

Introduction

Changing the Safety Culture

Electrical Safety Program Structure

Electrical Safety Program Development

Company Electrical Safety Team

Company Safety Policy

Assessing the Need

Problems and Solutions

Program Implementation

Examples

Company Safety Procedures

Results Assessment

Employee Electrical Safety Teams

Reason

Method

Safety Meetings

Who Attends

What Material Should Be Covered

When Meetings Should Be Held

Where Meetings Should Be Held

How Long Meetings Should Be

Evaluation of Safety Meetings

Outage Reports

Safety Audits

Description

Purposes

Procedure

The Audit Team

Audit Tools

Follow-Up

Internal versus External Audits

Chapter 14. Safety Training Methods and Systems

Introduction

Safety Training Definitions

Training Myths

Conclusion

Comparison of the Four Most Commonly Used Methods of Adult Training

Introduction

Classroom Presentation

Computer-Based Training (CBT) and Web-Based Training (WBT)

Video Training

Conclusion

Elements of a Good Training Program

Element 1: Classroom Training

Element 2: On-the-Job Training (OJT)

Element 3: Self-Training

Conclusion

On-the-Job Training

Setup

Implementation

Evaluation

Conclusion

Training Consultants and Vendors

Canned Programs and Materials

Tailored Programs

Training Analysis

Evaluating Training Vendors and Consultants

Conclusion

Training Program Setup—A Step-by-Step Method

Introduction

Background

A Plan

Analyze

Design

Develop

Implement

Evaluate

Modify

Glossary

Index