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Preface

This book is designed for students who want to develop professional skill in
stochastic calculus and its application to problems in finance. The Wharton School
course that forms the basis for this book is designed for energetic students who
have had some experience with probability and statistics but have not had ad-
vanced courses in stochastic processes. Although the course assumes only a modest
background, it moves quickly, and in the end, students can expect to have tools
that are deep enough and rich enough to be relied on throughout their professional
careers.

The course begins with simple random walk and the analysis of gambling games.
This material is used to motivate the theory of martingales, and, after reaching a
decent level of confidence with discrete processes, the course takes up the more de-
manding development of continuous-time stochastic processes, especially Brownian
motion. The construction of Brownian motion is given in detail, and enough mate-
rial on the subtle nature of Brownian paths is developed for the student to evolve a
good sense of when intuition can be trusted and when it cannot. The course then
takes up the It integral in earnest. The development of stochastic integration aims
to be careful and complete without being pedantic.

With the It6 integral in hand, the course focuses more on models. Stochastic
processes of importance in finance and economics are developed in concert with
the tools of stochastic calculus that are needed to solve problems of practical im-
portance. The financial notion of replication is developed, and the Black-Scholes
PDE is derived by three different methods. The course then introduces enough of
the theory of the diffusion equation to be able to solve the Black—Scholes partial
differential equation and prove the uniqueness of the solution. The foundations for
the martingale theory of arbitrage pricing are then prefaced by a well-motivated
development of the martingale representation theorems and Girsanov theory. Ar-
bitrage pricing is then revisited. and the notions of admissibility and completeness
are developed in order to give a clear and professional view of the fundamental
formula for the pricing of contingent claims.

This is a text with an attitude, and it is designed to reflect, wherever possible
and appropriate, a prejudice for the concrete over the abstract. Given good gen-
eral skill, many people can penetrate most deeply into a mathematical theory by
focusing their energy on the mastery of well-chosen examples. This does not deny
that good abstractions are at the heart of all mathematical subjects. Certainly,
stochastic calculus has no shortage of important abstractions that have stood the
test of time. These abstractions are to be cherished and nurtured. Still, as a matter
of principle, each abstraction that entered the text had to clear a high hurdle.

Many people have had the experience of learning a subject in ‘spirals.” After
penetrating a topic to some depth, one makes a brief retreat and revisits earlier
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topics with the benefit of fresh insights. This text builds on the spiral model in
several ways. For example, there is no shyness about exploring a special case before
discussing a general result. There also are some problems that are solved in several
different ways, each way illustrating the strength or weakness of a new technique.

Any text must be more formal than a lecture, but here the lecture style is
followed as much as possible. There is also more concern with ‘pedagogic’ issues
than is common in advanced texts, and the text aims for a coaching voice. In
particular, readers are encouraged to use ideas such as George Pdlya’s “Looking
Back” technique, numerical calculation to build intuition, and the art of guessing
before proving. The main goal of the text is to provide a professional view of a body
of knowledge, but along the way there are even more valuable skills one can learn,
such as general problem-solving skills and general approaches to the invention of
new problems.

This book is not designed for experts in probability theory, but there are a
few spots where experts will find something new. Changes of substance are far
fewer than the changes in style, but some points that might catch the expert eye
are the explicit use of wavelets in the construction of Brownian motion, the use of
linear algebra (and dyads) in the development of Skorohod’s Embedding, the use
of martingales to achieve the approximation steps needed to define the It integral,
and a few more.

Many people have helped with the development of this text, and it certainly
would have gone unwritten except for the interest and energy of more than eight
years of Wharton Ph.D. students. My fear of omissions prevents me from trying to
list all the students who have gone out of their way to help with this project. My
appreciation for their years of involvement knows no bounds.

Of the colleagues who have helped personally in one way or another with my
education in the matters of this text, I am pleased to thank Erhan Cinlar, Kai
Lai Chung, Darrell Duffie, David Freedman, J. Michael Harrison, Michael Phelan,
Yannis Karatzas, Wenbo Li, Andy Lo, Larry Shepp, Steve Shreve, and John Walsh.
I especially thank Jim Pitman and Ruth Williams for their comments on an early
draft. of this text. They saved me from some grave errors, and they could save me
from more if time permitted. Finally, I would like to thank Vladimir Pozdnyakov for
hundreds of hours of conversation on this material. His suggestions were especially
influential on the last five chapters.

J. Michael Steele
Philadelphia, PA
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